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Chapter 1
Introduction

The broad goal of computational neuroscience is to understand and predict the
behavior of neural phenomena using in silico techniques - or mathematical mod-
els - which are designed bottom-up using physical principles and often manifest
in a set of equations. Experimental observations and pathophysiological beha-
vior are then explained rigorously by mathematical analysis of the equations’
qualitative features. The surge in measurements and data in neuroscience has
propelled the top-down perspective of data-driven modeling - models and in-
sight are derived directly from sufficiently large datasets. This thesis addresses
challenges in the understanding of cerebral ischemia caused by stroke, a lead-
ing cause of disability or even death, by introducing bottom-up models. On the
other hand, this thesis also discusses the use of top-down techniques to construct
such models and the novel unfolding of qualitative features that they describe.
In neuroscience, complex phenomena arise in the interaction of several
mechanisms that regulate healthy behavior in the brain. These phenomena range
over several spatiotemporal scales - generation of action potentials in a single
neuron occurs on the timescale of milliseconds and electroencephalographic
rhythms on a neural population level can vary on the timescale of hours or
days. Neuroscientists use a variety of techniques to record and explain these
phenomena, which output an assortment of data to work with. The 21st-century
data boom has amplified the cycle of experiments and theoretical insight via
computational neuroscience. This practice began in the 1950s with Hodgkin and
Huxley describing dynamics of the giant squid neuron [1], and has now evolved
into a plethora of phenomenological and biophysical models that describe the
brain’s complex phenomena across diverse spatiotemporal scales [2].
These models are often described by a set of evolutionary equations that
explain several qualitative features underlying the neural phenomena. The
transitions between these features are controlled by one or many parameters
in the model, that are tuned to experimental data. Model parameters allow for
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2 Chapter 1. Introduction

several experimental conditions to be explained by a single model describing
the physical phenomena. Mathematically, the exhaustive study of qualitative
transitions in features exhibited by such models is called bifurcation analysis [3, 4].
Within the domain of dynamical systems, there is a list of canonical transitions
- or bifurcations - possible in mathematical models described by differential
equations. They are key in explaining the origins of rhythms, tipping points
and points-of-no-return in computational neuroscience. Bifurcations thus play
a key role in predictive modeling, and continuing the cycle of insight between
experimental and theoretical neuroscience.
The recent boom in data has also propagated a top-down approach to
modeling. In a bottom-up approach, biophysical principles or phenomenological
approximations are used to construct governing equations. On the flip side, the
abundance of experimental data is used to directly construct equations, usually
via some optimization procedure, saving significant time and effort. Combined
with machine learning and a priori insight into the underlying biophysics, the
data-driven approach to modeling is a powerful tool and is a mainstay of today’s
cutting-edge research.
This thesis explores the interaction of these three elements: data, models and
transitions, in the context of computational neuroscience. Biophysical models
to describe neural pathologies are constructed - in particular, cerebral ischemia.
Data-driven approaches are also introduced, to construct simplified models
from high-dimensional data. Lastly, newly observed transitions are analyzed to
derive their canonical behavior. Throughout the thesis, transitions in qualitative
behavior are analyzed via bifurcation analysis: to provide insight, to derive
canonical behavior of previously unobserved transitions, and as an inspiration
for data-driven modeling.

1.1 Challenges and motivation

Stroke is characterized by a reduction of blood flow to the brain, and is one of
the leading causes of death in the world [5]. About 87% of all stroke cases
are of ischemic type - where an occlusion in a blood vessel leaves areas in
the brain exposed to low-energy conditions. This manifests in a multitude
of neural pathologies, which can be studied at a cellular and global level,
and on time scales of minutes to days. Clinically, low cerebral blood flow
results in communication breakdown and subsequent that may result in, for
instance, loss of cognition, motor abilities and sensory behavior. This can be
accompanied by tissue swelling, that spreads outwards from the core area [6].
On a cellular level, lack of energy may cause the breakdown of ion gradients
leading to synaptic failure and cellular swelling. A variety of techniques are
used to study these dynamics - magnetic resonance imaging (MRI), computer
tomography (CT) and electroencephalography (EEG) in the clinic [7, 8], and
flourescence microscopy and electrophysiological recordings to study more local
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events [9, 10]. Nevertheless, several questions regarding the breakdown of
physiology remain open today - from a biological and clinical standpoint.
At a biological level, today’s research provides significant insight into the
dynamics of specific ion gradients at the synapse, such as those of Na+,
K+ and Cl−, and their breakdown [11, 12]. These ion gradients are co-
dependent via several complex regulatory mechanisms such as ion channels and
cotransporters. It is thus difficult to ascertain their interaction at the breakdown
of energy-dependent processes. For instance, it remains unclear how exactly
rising Na+ levels in the neuron trigger neurotransmitter accumulation in the
extracellular space. This has consequences on understanding how synaptic
communication may fail and what therapeutic measures can be introduced.
From a global viewpoint, it is well known that functional failure in the
brain precedes tissue swelling and cell death during stroke [13]. One clinical
approach to measuring functional failure during stroke is by detecting favorable
and unfavorable EEG rhythms [14]. However, the link between cellular ion
gradient breakdown, functional failure and consequent brain rhythm generation
remains unclear despite a variety of data from diverse modalities on multiple
spatiotemporal scales. Another challenge is the presence of several isolated
experiments in literature today, that deal with the same pathophysiological
phenomenon. Many papers study single phenomena, while it is well known
that several interacting processes are disturbed. For instance, in vitro stroke
experiments with animal models collect isolated experimental data, such as
Ca2+, Na+ and K+ transients [11] and spreading depolarizations [15]. Capturing
the essentials of the multifaceted changes involved in stroke ini a single
framework is challenging.
This thesis focuses on mathematical models that provide a sandbox approach to
answering the questions above. Modeling allows the collection of several inter-
acting pathophysiological processes in a single formulation to test hypotheses
and formulate predictions. Several experimental conditions can thus be lumped
together in a single dynamical description, which is usually done via model
parameters. Another reason to consider this approach is to extract the most
significant representations from provided neural data.
Since the advent of Hodgkin and Huxley’s work, numerous other formulations
have spurred in computational neuroscience. These include spatial models [16,
17], population averaging [18, 19, 20] and single-cell extensions of the Hodgkin-
Huxley approach itself [21, 22]. In particular, this thesis proposes the use
of biophysical descriptions as a working principle for building computational
models across different spatiotemporal scales. Biophysical models naturally
incorporate physical rules such as conservation laws and limiting principles
such as the Donnan equilibrium [23]. Moreover, they provide a generalized
framework to corroborate with several isolated experiments.
As mentioned before, neural data comes in various spatiotemporal modalities.
Given the volume of experimental data available and the growing use of
data-driven approaches in applied sciences, a flip-side to modeling can be
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proposed: can feasible computational models be derived directly from data?
This question has already been addressed in several data-driven approaches
used in neuroscience today [24]. These methods also include machine learning-
based approaches which grow in synergy with neuroscience - advances in
computational neuroscience in turn also improve machine learning methods
[25]. This thesis focuses on the following question: can machine learning and
data-driven approaches uncover governing equations directly from data, similar
to those obtained from bottom-up approaches? Recent works have shown that
this perspective is promising [26, 27].
In bottom-up and top-down approaches, computational models are required to
be feature-rich - it is often desirable to express several experimental conditions
within the same formulation. This is characterized by model parameters. For
instance, consider a neural model with a parameter describing available energy
in the system. Changing this parameter value results in a transition from healthy
activity to pathological behavior such as swelling, depolarization and synaptic
arrest. This thesis addresses the characterization and quantification of such
transitions via bifurcation analysis. These transitions - or bifurcations - are
characterized by normal form equations, which are universal equations describing
generic behavior in models upon varying parameters [3, 4].

1.2 Aims of the thesis

This thesis has three overarching goals, outlined as follows.

1. From a bottom-up perspective, the goal of this thesis is to construct
explainable and extendable neural models that corroborate several isolated
experiments, and reconcile clinical and biological events, specifically in
ischemia.

2. From a top-down perspective, the goal is to obtain feasible models directly
from neural data. These methods are applied when bottom-up approaches
are unfeasible - such as when datasets are high-dimensional.

3. Bottom-up and top-down models are required to be feature rich with the
help of parameters. Thus the third goal in this thesis is to quantify and
qualify parameter variance in top-down and bottom-up approaches with
bifurcation analysis.

The thesis begins with a background on cerebral ischemia, and bottom-up and
top-down modeling in Chapter 2.
In Chapter 3, a detailed biophysical model of the tripartite synapse is
constructed to examine ion dysregulation in low-energy conditions. The model
is inspired by several different modeling efforts and describes the dynamics of
Na+, K+, Cl−, Ca2+ and glutamate at the synapse during ischemic conditions.
Using bifurcation analysis, crucial tipping points and points-of-no-return are
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quantified, to explain the path to recovery from transient ischemia. Moreover,
blocking specific ion channels is suggested as therapeutic measures.
In Chapter 4, the effort in Chapter 3 is extended to a neural population level
using a detailed neural mass model. Here, the aim is to reconcile EEG rhythmic
behavior during stroke with the effects of ischemia on synapses using differential
sensitivity analyses. These effects include suppression of healthy EEG rhythms
and the functional reorganization of inter-population networks.
In Chapter 5, data-driven model discovery is studied from the perspective of
parameter variance. High-dimensional datasets are collected from physical
phenomena that contain a transition in pattern-forming behavior. Machine
learning is used to discover underlying low-dimensional representations in the
form of characteristic normal form equations of the bifurcation involved. The
technique serves as a first approach for building parameter-dependent models
directly from data by using normal forms as building blocks.
In Chapter 6, a new bifurcation observed in a neural field equation is explored.
In the travelling wave formulation of the neural field, the problem reduces to
explaining the unfolding of a new codimension 2 homoclinic bifurcation. The
bifurcation is characterized by a saddle to saddle-focus transition, where the
critical point is characterized by a 3-dimensional stable leading eigenspace. The
unfolding is constructed using a Poincaré map technique and analyzed for its
asymptotic behavior in the wild case.
Chapter 7 concludes the thesis with a general discussion and an outlook towards
future work.





Chapter 2
Background

This chapter lays out the scientific setting of the thesis. In Section 2.1, biological
events surrounding ischemic stroke in the brain are summarized, from a local
and global view. Section 2.2 briefly explains how mathematical models for such
phenomena may be constructed, from a bottom-up and top-down perspective.
In Section 2.3, fundamentals of bifurcation analysis are explained.

2.1 Energy dependence in the brain and ischemic

stroke

The human brain consumes about 20% of the body’s energy supply [28].
The heavy cost is paid for maintaining healthy signaling using adenosine
triphosphate (ATP) as the currency [29]. ATP is produced all over the body
to meet energy needs via two processes of different efficiencies: glycolysis in
the cytosol and oxidative phosphorylation in the mitochondria. The former
produces 2 mol of ATP for every mole of glucose, and the latter 36 mol of ATP
per mol of glucose. Neurons take advantage of both these processes to meet
their demands [30, 31, 32].
Supply of glucose and oxygen to the brain is mediated by a rich network of
blood capillaries that interact with brain cells at the blood-brain barrier. These
cells include neurons and glial cells. Restriction of blood flow to this junction can
result in stroke that triggers a cascade of pathological events at the cellular and
brain network level [5]. Ischemic stroke in particular counts for 87% of all stroke
cases, characterized by the blockages in arteries carrying oxygen rich blood,
often due to blood clots. This leaves areas in the brain exposed to metabolic
stress and has immediate and possible long-term consequences. Deprivation
of energy can result in cell death and loss of synaptic communication within
minutes. On a longer timesclae, stroke can lead to chronic issues such as

7



8 Chapter 2. Background

Figure 2.1: Summary of energy dependent processes at the tripartite synapse and the
affected ion transport mechanisms. The tripartite synapse is composed of four major
compartments, the presynaptic terminal (left top), the perisynaptic astrocyte process
(right), the postsynaptic terminal (left bottom) and the synaptic cleft. Several ion
transport mechanisms of Na+, K+, Cl−, Ca2+ and glutamate are shown, with critical
ATP-dependent processes marked in red. Reprinted from ref. [33] with permission.

paralysis and loss of cognition [6].
In the core area of stroke, cells irreversibly swell and lyse within minutes in
a process called cytotoxic edema, resulting from significant changes in ion
concentrations and increased osmotic pressure across the cell membrane. The
area of interest as a therapeutic target is the stroke penumbra, where metabolic
stress is mild and reversible. Here, the cascade of pathologies may possibly be
reversed, but the dynamics in mild ischemic conditions are not well understood.
Understanding these dynamics may hold the key to identifying mechanisms
underlying stroke pathophysiology and the prevention of its spreading into
neighboring areas [5].

2.1.1 Biological consequences: ion homeostasis

To understand stroke dynamics it is vital to first examine energy dependence
at a cellular level and the consequences of low-energy conditions. The blood-
brain barrier comprises endothelial cells at the capillary wall that selectively
exchange glucose with the brain via glucose transporters. The capillaries are
wrapped to a large extent by the endfeet of astroyctes [34] - a specific type of
glial cells - which store glucose in the form of glycogen, for eventual conversion
to lactate for neuronal use via the astrocyte-to-neuron-lactate-shuttle (ANLS)
[35, 36]. Astrocytes have star-like soma and big surface area, and play an
immense role in ion homeostasis and regulating neuronal energy supply. Thin
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perisynaptic astrocyte processes protrude into neighboring synapses away from
the astrocyte soma and clear away excess ions in the synaptic cleft, thereby
maintaining healthy synaptic transmission [37, 38, 39].
The critical meeting point of the perisynaptic process, a presynaptic and
postsynaptic terminal is called the tripartite synapse [40], and is one of the key
topics studied in this thesis. At this juncture several ATP-dependent processes in
the form of ion channels and exchangers are responsible for mediating healthy
neuronal communication. A summary of these processes is shown in Fig. 2.1.
The vast majority of ATP is consumed by the Na+/K+-ATPase (NKA), found in
astrocytes and neurons [29, 41]. The NKA consumes 1 molecule of ATP to drive
3 Na+ ions and 2 K+ ions against their concentration gradient across the cellular
membrane. By doing so, the NKA helps to maintain a hyperpolarized resting
membrane potential.
The gradients of Na+ and K+ are regulated by several ion channels,
cotransporters and exchangers active across the membrane. For instance,
voltage-gated Na+ and K+ channels in the neuron allow the respective ions
to flow across the membrane along their concentration gradient in response
to depolarization. They are also regulated by the bulk movement of anions,
namely Cl− via cotransporters such as the KCC cotransporter [42], that pushes
one Cl− ion into the cell, along the concentration gradient of K+. The ions
Na+, K+ and Cl− are the only ions that exist in large millimolar concentration
intracellularly and extracellularly, and hence largely mediate cellular volume
regulation via osmotic diffusion of water, aquaporins and volume-regulated
channels [43, 44, 45]. The bulk movement of these ions also interact with the
homeostasis of other critical ions, such as Ca2+ and neurotransmitters, that
exist in smaller intracellular and extracellular concentrations. Action potential
mediated depolarization allows the influx of Ca2+ in the neuronal presynaptic
terminal. This in turn catalyses neurotransmitter endocytosis and exocytosis into
the synaptic cleft [46]. Ca2+ gradients are also mediated by ion exchangers such
as the Na+/Ca2+-exchanger (NCX), which exchanges 3 Na+ ions for 2 Ca2+

ions across the membrane [47].
The excess release of ions in the extracellular space and synaptic cleft by the
neuron is readily cleared by the astroycte [37]. The astroycte maintains a
resting membrane potential close to the reversal potential of K+ and is highly
sensitive to the extracellular concentration of K+. Ion channels like the inwardly-
rectifying K+ channel (Kir) [48] and the Na+-K+-2Cl− cotransporter [49] clear
away excess extracellular K+ released during an action potential and allow the
neuronal membrane potential to recover. Coupled with astrocyte Na+ and K+

gradients, the excitatory amino acid transporters (EAATs) clear excess glutamate
from the cleft at glutamatergic synapse post neuronal exocytosis [50, 51, 52].
The astrocytes at the tripartite synapse thus function as a sponge - absorbing
excess extracellular ions - to prevent irreversible neuronal depolarization and
postsynaptic excitotoxicity [53], and allow the smooth signalling between
neurons.
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Figure 2.2: Changes in electroencephalography (EEG) rhythms as a function of cerebral
bloodflow. Cerebral ischemia during stroke is characterized by loss of cerebral blood flow
(CBF) which results in a progressive loss of faster frequencies in electroencephalography
(EEG). This is accompanied by ion dysregulation, compartmental swelling, depolarization
and death at a cellular level. Reprinted from ref. [62] with permission.

Under low-energy conditions, the NKA breaks down and ions move more
freely across their concentration gradient [54]. Accumulation of Na+ and K+

follows immediately after the inhibition of NKA activity, inside and outside
neurons and astrocytes [55, 56, 11], which triggers further accumulation of these
ions via voltage-gated channels and other transporters with nonlinear behavior,
driving strong depolarization which may be irreversible [57, 58]. Astrocytes
become incapacitated to manage the changing extracellular gradients, further
exacerbating the situation [59]. Massive intracellular ion accumulation results
in osmosis-driven cell swelling and possible lysing. At the synaptic level, rising
presynaptic Ca2+ and excess cleft glutamate cause excitotoxicity in postsynaptic
receptors [60, 11], and may manifest in apoptosis-induced cell death [61].
Today’s research provides insight into these processes more than ever before.
However, it is still unclear exactly how all these processes contribute to efficient
synaptic communication. Moreover, the key players and the effect of their
breakdown on other ion homeostatic processes are not completely understood.
What are the consequences of Na+, K+ and Cl− dysregulation on other ions
such as Ca2+ or glutamate? What are the crucial tipping points and points-of-
no-return? How can isolated experiments be assimilated to realize therapeutic
measures for homeostatic recovery? Many of these questions are addressed in
this thesis with computational modeling, which is the subject of Section 2.2.

2.1.2 Clinical consequences: rhythms and networks

Stroke patients exhibit a range of symptoms following stroke, such as
cognitive damage or possibly paralysis. In the clinic, several techniques
such as magnetic resonance imaging (MRI), computer tomography (CT) and
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electroencephalography (EEG) are used to diagnose, monitor and assist in
the treatment of stroke patients. CT scans distinguish between ischemic or
hemorrhagic stroke. MRI analysis, though slower, provides more detail and
is used to observe changes in stroke lesion volume following acute stroke [63, 7].
In acute stroke, the role of EEG is limited. However, EEG finds increasing
application in monitoring comatose patients with a postanoxic encephalopathy
after cardiac arrest for prognostication. For instance, in carotid arterectomy, the
EEG has an established role to to assist in the decision of temporary shunting is
needed [64, 65, 66].
EEG is an important diagnostic tool for many other clinical applications such as
neurodegenerative disorders and epilepsy. It is obtained by recording electrical
activity from a grid of electrodes placed on a patient’s scalp. The activity is
generated by cortical columns that serve as large current dipoles. The cortical
columns are composed of interneurons, glia and most importantly, several
aligned pyramidal cells that receive synchronous input [8, 67]. Pyramidal cells
are neurons that are found ubiquitously, and are characterized by a conical
soma and rich dendritic branching, that play an important role in signaling and
computation [68].
The brain generates distinct rhythms and patterns in the form of signal intensity
and frequency that can be noninvasively measured with scalp EEG recordings,
as shown in Fig. 2.2. Faster rhythms such as β (14-20 Hz) and α (8-13 Hz)
are regarded as normal rhythms and dominant in ‘awake’ patients. Slower
rhythms such as θ (3-8 Hz) are normal in children and young adults, and are
also the dominant rhythms during sleep. δ (<3 Hz) rhythms are also normal
during sleep, but are associated with pathology when awake. Suppression
of fast and emergence of slow rhythms are common in patients with acute
and subacute ischemic stroke [14, 69, 70]. Moreover, isoelectric, low voltage
and burst-suppression patterns are associated with poor neurological outcome
following global cerebral ischemia [71, 72, 73].
Stroke also affects circuitry and may result in functional reorganization and
plasticity with long-term effects [74]. Axonal sprouting [75] and dendritic
spine turnover [76] are associated with damage and recovery in the penumbra.
Cortical stroke can also impair motor function by disrupting thalamocortical
connectivity [77, 78, 79]. These impairments are associated with chronic
behavioral changes and require techniques such as neurorehabilitation for
recovery.
It is well known that synaptic failure precedes edema, spreading depolarization
and cell death in stroke [41]. At a cellular level, this may be alluded to
diminishing neurotransmitter loading and release in low-energy conditions
[13]. However, the relation between complex ischemic pathophysiology at
the synaptic level and stroke mediated functional damage at the neuronal
population level remains unclear. How does ion dysregulation at the tripartite
synapse manifest in pathological EEG rhythms? How does synaptic arrest
occur before cell swelling and spreading depolarizations? The answers to
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these questions should be addressed by understanding the multi-scale impact
of stroke. In the next section, mathematical modeling is presented as a way to
address this viewpoint and put into perspective the multitude of interactions
occurring at cellular and tissue level.

2.2 Modeling in computational neuroscience

Since the 1950s, computational modeling has offered an alternative view to
neuroscience. Models describe neurophysiological processes - biophysically or
phenomenologically - with the aim to reproduce experimental results, provide
novel insight and make consistent predictions. This approach began with the
seminal work of Hodgkin and Huxley in 1952 [1], who described the genesis
of action potentials in the giant squid axon with a set of equations, famously
known as the Hodgkin-Huxley model. It can be said that the Hodgkin-Huxley
model serves as a basis for nearly all of today’s diverse range of models in
computational neuroscience. This section explores some of the essential ideas in
computational neuroscience today with context to providing insight to some of
the issues discussed in the previous section. In particular, single-cell, spatial and
data-driven approaches are discussed.

2.2.1 Single-cell approaches

Single-cell modeling focuses on describing ion homeostasis and membrane
potentials of a single neural compartment. The selective permeability of the
compartmental membrane allows ions to be exchanged with the extracellular
space, subject to two driving forces: diffusion and electrical forces. These two
balance out at the Nernst potential, which is the solution to disappearing current
in the Nernst-Planck equation [2]. The Nernst potential EX is associated with the
‘reversal’ in movement of an ion X, and is used to model the associated current
IX given the membrane potential V as follows,

IX = gX(V − EX), (2.1)

where gX is a constant conductance. The Nernst potential is given by,

EX =
RT

zF
log
(

[X]e
[X]i

)

, (2.2)

where [X]i and [X]e are intracellular and extracellular concentrations of ion
X respectively. The constants R and F are the universal gas constant and
Faraday’s constant, respectively. The absolute temperature T is usually set to
body temperature and z is the valency of the ion X.
The Hodgkin-Huxley model describes the formation of an action potential,
based on the opening and closing of voltage-gated Na+ and K+ channels. In
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Figure 2.3: Diverse behaviour exhibited by the Hodgkin-Huxley model Eq. 2.3. (Left) Plot
of the bifurcation diagram of the model with respect to input current Iapp. (Right) Plots
of membrane potential V against time for two values of parameter Iapp using V = −65

mV as initial condition. The following parameters are fixed: ENa+ = 55 mV, EK+ = −77

mV, EL = −65 mV, ḡNa+ = 40 mS/cm2, ḡK+ = 35 mS/cm2, gL = 40 mS/cm2 and
C = 1 µF/cm2. The following bifurcations are shown: limit point (saddle-node) of
cycles (LPC), subcritical Hopf (H) and the saddle-node homoclinic bifurcation (SNH).
Bifurcation analysis is performed with Matcont [80].
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this case the conductances gX are nonlinear functions of the membrane potential
V. The reader is referred to [2, 81] for a detailed discussion and derivation.
The model is composed of a set of four differential equations that describe the
membrane potential V of a neuron as follows,














































C
dV

dt
= −ḡNa+m3h(V − ENa+)− ḡK+n4(V − EK+)− gL(V − EL) + Iapp,

dm

dt
= αm(1− m)− βmm,

dh

dt
= αh(1− h)− βhh,

dn

dt
= αn(1− n)− βnn,

(2.3)

where m, h, n are voltage-dependent gating variables, ḡX are maximal conduct-
ances, EX are reversal potentials and Iapp is constant applied current. The terms
αX and βX model the opening and closing of the gating variables respectively.
They are described by nonlinear terms dependent on the membrane potential V
and are given by,

αm =
0.32(V + 52)

1− exp(−(V + 52)/4)
, βm =

0.28(V + 25)

exp((V + 25)/5)− 1
,

αh = 0.128 exp(−(V + 53)/18), βh =
4

1+ exp(−(V + 30)/5)
,

αn =
0.016(V + 35)

1− exp(−(V + 35)/5)
, βn = 0.25 exp (−(V + 50)/40) .

(2.4)

Typical traces of V against time for nonzero Iapp are shown in Fig. 2.3 (right).
For a range of the parameter Iapp, the Hodgkin-Huxley model is bistable -
varying Iapp results in multiple invariant sets that are simultaneously stable.
The system contains two stable equilibria (one healthy, one depolarized) and a
stable periodic orbit (action potentials). This property is exploited in single-cell
approaches to design models that inherently contain bistability which provides
the basis to qualify tipping points and points-of-no-return via bifurcation
analysis.
The dynamics of other ion channels are also modeled as ohmic currents,
identical to Eq. 2.1. Alternatively, the Goldman-Hodgkin-Katz (GHK) current
was formulated to model unequal ion distribution on either side of a membrane
[82, 83, 84]. While the ohmic current as in Eq. 2.1 has a linear dependence, the
GHK current is nonlinear in V and is given by,

IGHK =
F2V

z2RT

[X]i − [X]e exp
(

− FV
zRT

)

1− exp
(

− FV
zRT

) . (2.5)
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Computational models developed since the 1950s have continuously used these
two types of currents to model ion fluxes, along with nonlinear gating variables
and Michealis-Menten type kinetics within the Hodgkin-Huxley setting. Given
GHK or ohmic formulations of ion channel currents IX

Y of type Y corresponding
to ion X, the evolution of intracellular ion concentrations [X] is given by,

d

dt
[X] = − 1

zF · W ∑
Y

IX
Y , (2.6)

where W is the intracellular volume.
Early works modeled astrocyte-mediated ion homeostasis using glial buffers
[85, 86] that modeled K+ buffering [37]. The buffers were described as a bath
of constant K+ concentration and were allowed to exchange K+ exclusively
with the extracellular space. This exchange was modeled by linear diffusion.
For several models that study spreading depolarization in the context of
ischemia or epilepsy, glial buffers remain the norm [87, 88, 89]. Explicit ion
dynamics in the astrocyte were first constructed in the context of cytosolic Ca2+-
oscillations, that depended on inositol 1,4,5-trisphosphate (IP3) concentrations
[90, 91]. These models evolved to explicitly explain the Ca2+-induced-Ca2+-
response phenomenon that is mediated by metabotropic glutamate receptors on
the astrocyte membrane [92, 93, 94].
During this time, astrocytes came to be recognized increasingly with neurotrans-
mission and gliotransmission [95, 96] - the release of neurotransmitter glutamate
back into the synaptic cleft by astrocytes. This creates a positive feedback mech-
anism for glutamate at the tripartite synapse. Modeling efforts in this context fo-
cused on this cycle, and its effect on synaptic transmission [97, 98, 99, 100, 101].
Similar to previous work, these models focused on astrocyte Ca2+-signaling with
novel coupling of presynaptic and postsynaptic function.
As discussed in the previous section, it is essential to understand Na+, K+

and Cl− dynamics at neuron-astrocyte interactions in the context of ischemia
and stroke. Several such models have been proposed over the years to study
spreading depolarizations and epilepsy [86, 85, 88, 87]. The addition of
the anion Cl− makes the system electroneutral - allowing an almost equal
exchange of charge across the membrane without completely relying on leak
channels. Such formulations have also been proposed to investigate the specific
roles of astrocyte channels such as the bicarbonate cotransporter, Na+-K+-
2Cl−transporter (NKCC1) and the inwardly rectifying Kir channel on healthy
neuronal function [102, 103, 104]. Ischemia is modeled by transiently inhibiting
Na+/K+-ATPase activity. In this regard, modeling work has focused on
qualifying irreversible depolarization and the mechanistic nature of cell swelling
[89, 105, 43, 106].
Nevertheless, the insight provided by single-cell models regarding the link
between transmission failure, cell swelling and ion dysregulation remains
limited. The challenge lies in the highly complex nature of the tripartite
synapse - it is feasible to model certain processes phenomenologically, such
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as glutamate recycling [107] or anion movement [105]. Moreover, it is difficult
to reconcile conservation of mass and volume, electroneutrality and physical
limiting principles like the Donnan equilibrium, with biophysical ion gradients
[43]. With growing experimental insight on specific ion channel behavior,
the volume of detailed models today and increasing computational power,
there is a silver lining. Given such detailed models of the tripartite synapse,
several questions arise. What are the key parameters underlying ischemic
pathologies and differential sensitivity? What astrocyte processes contribute to
the preservation of healthy neuronal behavior in low-energy conditions? What
therapeutic measures, if any, can assist in successful recovery of the synapse
upon restoration of energy?
This section provided a very brief outline of single-cell approaches today. An
overview of early neuronal modeling can be found in the classic books by Hille
(1984) [108], and Koch and Segev (1989) [21]. Reviews on state of the art astrocyte
modeling are presented in [109, 22, 110].

2.2.2 Spatial models

Examples of some global pathologies of ischemia and stroke are the enlarging
of the core area, global synaptic failure and spreading waves of depolarization
and ion accumulation. These events occur on a broader spatial scale - such as
cortical columns, tissues and brain regions - where the number of neurons could
vary from thousands to millions. In this scenario, single-cell models become
computationally expensive, and difficult to accurately describe and infer from.
Spatial models overcome this by coarse graining and describing the averaged
activity of a neuronal population instead. They are designed to be compared
with clinical measurements such as EEG and spatial imaging data such as MRI,
and are mathematically tractable. This section covers two such formulations -
neural masses and neural fields.
The foundational work in neural mass modeling was laid by Lopes da
Silva and colleagues [18] to explain physiological α-rhythms. The work was
further popularized by the Jansen-Rit formulation [19, 111] which contains
three interacting neuronal populations - pyramidal neurons, and inhibitory and
excitatory interneurons. Neural mass models contain two essential components
underlying coarse-graining - the synaptic response and firing rate. The simplest
model corresponds to that of a single population. Given an incoming firing rate
or spike density Qin(t) (in units of frequency), the neural mass model computes
the average postsynaptic potential V(t). The resulting EEG is assumed to be
directly proportional to the pyramidal postsynaptic potential. V(t) is simply
given by the linear convolution,

V(t) = h(t) ∗ Qin(t), (2.7)

where h(t) is the synaptic impulse response (in volts) usually normalized to
unity and ν is the mean synaptic efficacy. The convolution collects effects of
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incoming firing rates Qin(t) via the opening and closing of the synapse, as
described by the impulse response. They are usually modeled after postsynaptic
potential profiles. For instance, the impulse response used in the Jansen-Rit
formulation is the following,

h(t) = νtτ1 exp(−tτ2), (2.8)

where ν is the maximum postsynaptic potential, and τis are positive time
constants. The populations are excitatory for ν > 0 and inhibitory when ν < 0.
Next, potential V(t) is converted to a population firing rate Q(t) via a sigmoidal
firing rate S(x) as follows,

Q(t) = S(V(t)), (2.9)

where

S(x) =
Qmax

1+ exp(β(xth − x))
, (2.10)

with slope β, threshold xth and maximal firing rate Qmax. The firing rate Q(t)
can then be fed into other populations or to itself (self excitation/inhibition). The
evolution equations are constructed by taking the Laplace transform of Eq. 2.7,
which gives,

V̈ + 2τ2V̇ + τ22 V = ντ1Qin(t), (2.11)

where the dot indicates a time derivative. By introducing more populations
and adding connections, the term Qin is replaced by firing rates from connected
populations, which forms the basis for coupled neural masses. Extensions of
the Jansen-Rit model are used frequently in coarse-grained neuronal modeling
today. For instance, coupled neural masses are used widely to study epileptic
seizure activity [112, 113, 114, 115]. They are also popular in the clinic and are
essential components in virtual epileptic surgery [116, 117].
The idea of population firing rate in Eq. 2.10 can be leveraged to construct
spatiotemporal models of neural activity. This is precisely the working principle
in neural field equations, first conceived by Beurle [118], and popularized by the
works of Wilson and Cowan [119, 16], Amari [17, 120] and Nunez [121]. They
are characterized by spatiotemporal integrodifferential equations and contain
two major components - a synaptic component and a spatial connectivity kernel
supported by the firing rate function. The popular Amari formulation models
the activity u(x, t) corresponding to a neuron at point x ∈ Ω and time t as
follows,

u̇(x, t) = −u(x, t) +
∫

Ω
w(x, y)S(u(y, t))dy, (2.12)

where the dot indicates time derivative. The term w(x, y) is the connectivity
kernel and S(u) is the firing rate Eq. 2.10 from before. The kernel w(x, y) is
usually chosen to be homogeneous such that w(x, y) ≡ w(x − y) which makes
the integral term a convolution,

u̇(x, t) = −u(x, t) + w ∗ S. (2.13)
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Diverse variants of neural field equations are studied for their rich pattern-
forming dynamics - bump solutions, traveling waves and breather solutions
[122, 123]. Modeling efforts in neural fields focus on finding these patterns using
bifurcation analysis, which is covered in the next section. These spatiotemporal
patterns are linked with a variety of neurological phenomena, such as EEG
rhythms [124], working memory [125], hallucinations [126], microelectrode array
data [127], evoked response potentials [128] and epileptic seizures [129]. In the
chapters ahead, a new transition in traveling wave behavior emerging from a
neural field equation is theoretically analyzed for nearby behavior.

This thesis also focuses on building models that bridge single-ion approaches
and spatial models in the context of stroke. Neural mass models are chosen for
coarse graining for two reasons. First, spatial dependence is absent in neural
masses. Second, biophysical descriptions of synaptic currents can be efficiently
extended to the population-averaged setting. Adaptations to the Jansen-Rit
formulation have been used to extend the pool of describable EEG rhythms. The
Wendling model [130] in particular uses slow-fast synaptic dynamics to explain
rapid activity in addition to normal activity, spike discharges and slow rhythmic
activity. Slow-fast dynamics govern the presence of burst-suppression behavior
[20] and mixed-mode oscillations [131, 132], which are clinically unfavorable
EEG phenomena.

Slow characteristics at the synapse are derived from plasticity and ion dynamics.
The Liley model [133] is the first to introduce reversal potentials in the neural
mass formulation, resulting in chaotic dynamics - a property considered vital
for modeling perception and cognition [134, 135]. Extensions of the Liley model
have successfully modeled burst suppression behavior [136, 137].

In the context of stroke and ischemia, there is a dearth of neural mass approaches
to explain EEG dynamics. Ion dynamics play a crucial role in providing
the slow transients needed to model behavior such as physiological rhythms,
slow δ activity and burst suppression in a single model. The challenge
lies in the detail required to model energy dependence, and to reconcile the
effect of low ATP at synapses with population-averaged activity. To this end,
Fokker-Planck approaches have been used to derive spatially homogeneous
coarse-grained activity from populations of Hodgkin-Huxley and FitzHugh-
Nagumo neurons [138]. However, applying this approach to detailed single-cell
models - such as those discussed in the previous subsection - quickly becomes
mathematically intractable. Moreover, changing ion dynamics also make the
firing-rate assumption in Eq. 2.10 unfeasible [139] and requires a reworking of
the reversal potentials in the Liley model, which are kept constant. In chapters
ahead, bridging ion dynamics and population activity in the context of ischemia
is addressed by using a hybrid neural mass model that includes explicit ion
dynamics, a detailed firing rate function and realistic synaptic currents.
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2.2.3 Data-driven modeling

So far, bottom-up approaches have been discussed - physical principles and
approximations are used to construct equations that constitute computational
models. However, the bounty of experimental data today warrants a fresh
perspective on modeling. Can data reinforce a biophysical description? Can
underlying physical principles be derived directly from data itself? This view -
the so-called top-down approach - forms the modern arm of modeling, and has
tremendous scope in computational neuroscience. Data-driven modeling thus
focuses on building generalizable approaches for analyzing sufficiently large
datasets - with the goal of performing predictive modeling.
A key problem associated with detailed biophysical models is that of parameter
estimation. Extensions of the Hodgkin-Huxley model contain several parameters
that are required to be inferred or estimated from data, which is tedious.
Data assimilation methods are widely used in computational neuroscience to
do so, and also assimilate unobserved states. Particle filters such as Kalman
filter methods have been used to estimate unobserved Hodgkin-Huxley gating
variables [140], and unknown parameters in neuronal models [141, 142].
Classical optimization approaches are also used in data assimilation. Assuming
data X̂ ≡ X̂(t) and of state X ≡ X(t) described by a parameter-dependent
model Ẋ = f (X, α), the goal is to compute unknown parameter α by optimizing
a cost function, usually chosen as the least-squares difference between state and
observation,

min
α

∑
t

‖X̂ − X‖2. (2.14)

Synchronization methods - where data is fed back as control into the model
itself - are used to estimate parameters in domains with periodicity and chaos
[143, 144]. In ref. [145], parameter sensitivity equations were computed to
perform the optimization steps. The reader is referred to ref. [146] for a
review of data assimilation and other statistical approaches in computational
neuroscience.
In data assimilation approaches, the underlying biophysical principles are
already known. Data-driven approaches such as Bayesian inference methods,
modal decomposition techniques and machine learning approaches extract
causal information directly from datasets. From a Bayesian viewpoint,
perception in the brain is represented probabilistically [147]. Inference methods
are thus used widely in behavioral studies to understand decision making
[147, 148, 149]. Lately, they have also been theorized as a way to understand
learning [150] by viewing synaptic weights as random variables.
On the other hand, modal decomposition techniques use spectral methods to
identify the most significant spatiotemporal patterns from high dimensional
datasets. This reduces the analysis to just a few significant modes. Such
information is leveraged to capture low-dimensional representations from data
and is suitable for classification tasks. Popular methods include principle
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component analysis (PCA) and empirical mode decomposition (EMD) [151, 152];
they are however not particularly suited to time-varying nonlinear data. A new
modal decomposition technique, called dynamic mode decomposition (DMD)
[153] overcomes this issue by approximating the underlying linear Koopman
operator. DMD and Koopman operator methods have been recently applied in
neural data to characterize mismatch negativity [154] and spindle networks [155]
in electrocorticography (ECoG) data and detect seizures in EEG [156].
Alternatively, one may consider extracting evolution equations directly from
data - a perspective called data-driven model discovery. This view is the
principle behind the Sparse Identification of Nonlinear Dynamics (SINDy),
introduced in [157]. Given observations X̂, a prospective model is introduced,

Ẋ = ΘTW(x), (2.15)

for a library of candidate functions W(x) and a list of interpolation constants Θ.
Next, a cost function identical to the one used in data assimilation is introduced,
which is optimized over the interpolation constants with a sparsity constraint,

min
Θ

‖X̂ − X‖+ R(Θ). (2.16)

where the regularization R(Θ) is used to define a sparsity constraint on the
interpolation constants. This yields a parsimonious representation of dynamics
and has been used in modeling biological networks [158], chemical reaction
dynamics [159], fluid flows [160] and control [161].
This thesis particularly focuses on low-dimensional, or latent representations of
complex behavior, which may manifest in the form of high-dimensional datasets.
Machine learning, or deep learning [162, 163], is a widely used technique to
achieve this, and has been successfully applied across several disciplines. The
building block in machine learning is a neural network, which is canonically an
interconnected, feed-forward network of perceptrons [164]. For a large dataset
X ∈ Rd, the underlying low-dimensional representation Y ∈ Rm, m ≪ d is
computed via a neural network φθ : Rd 7→ Rm, parametrized by θ,

Y = φθX. (2.17)

The neural network φθ is a composition of nonlinear functions fi such that,

φθ = f1 ◦ f2 ◦ f3 · · · (2.18)

The usual representation of fi’s are

fi(x) = σ(Wix + bi), (2.19)

where weights Wi and biases bi are matrices and vectors respectively. The
activation σ is usually a monotonously increasing functional, acting component-
wise. The weights and biases make up the set θ. To learn the parameters
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θ, another neural network ψα : Rm 7→ Rd is introduced and the following
minimization problem is solved for a suitable chosen norm (usually l2),

min
α,θ

‖ψφX − X‖+ R(X, α, θ), (2.20)

where R(α, θ) is a suitable regularization. Choices of network architecture,
activations, and cost function change depending on the problem at hand.
The architecture introduced above, characterized by the pair (φθ , ψα), is called
an autoencoder. Machine learning methods have been used in the context
of computational neuroscience to characterize latent representations in data,
categorize behavior from neural data and infer cortical perception by extracting
feature maps. The reader is referred to [165, 166] for reviews on these
applications.
Data-driven techniques today provide a variety of fresh perspectives on
predictive modeling in neuroscience. The field of model discovery is fresh
with not many applications to neuroscience, but is suited to the long-standing
goal of extracting parsimony and tangible models from high-dimensional data.
Lately, neural networks have been used to perform model discovery in the latent
space. Underlying models are characterized by the SINDy [26] approach or the
approximate Koopman operator [27, 167]. However, one of the key obstructions
here is the absence of parameter-dependent models. In the context of neural
pathologies like seizures and stroke, the modeling goal is to represent essential
qualitative features in one single formulation, using parameters. Recently,
parameter-varying data was used to construct a data-driven bifurcation diagram,
however without constructing a tangible model [168]. In chapters ahead,
parameter-variance in the context of model discovery is addressed using neural
networks in conjunction with normal forms - canonical, parameter-dependent
model building blocks - which are subjects of the next section.

2.3 Transitions in models: bifurcation theory

Steady-state objects such as equilibria and periodic orbits are called invariant
sets. The transition points in between are examples of bifurcations. Quantifying
the location and unfolding of such transitions between invariant sets forms the
domain of bifurcation analysis 1. Consider a nonlinear dynamical system,

ẋ = f (x, α), x ∈ R
n, α ∈ R. (2.21)

The invariant set ω(x0) corresponding to an initial condition x = x0 is given by,

ω(x0) = {x | ∃ {tj} s.t. ϕ
tj
x0 → x when j → ∞}, (2.22)

1This section covers some of the essentials of bifurcation analysis. The reader is referred to [3, 4]
for comprehensive text on the matter.
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Figure 2.4: Canonical transitions corresponding to a few codimension one bifurcations.
Saddle-node and Hopf are canonical bifurcations of equilibria (local), while saddle-node
of cycles and saddle homoclinic orbits correspond to global bifurcations. Blue, red
and green equilibria or cycles correspond to stable, unstable and center invariant sets
respectively. The black circle corresponds to a hyperbolic saddle.

where ϕt
y is the corresponding time trajectory at time t with initial condition

y, and is called an orbit. A steady state would simply correspond to a single
point in ω(x0), while a periodic orbit would be a closed curve. The notion
of a qualitative change in invariant set behavior is captured by topological
equivalence - two instances of the dynamical system f (x, α1) and f (x, α2)
are topologically equivalent if orbits from both systems can be mapped onto
each other by continuous, invertible transformations called homeomorphisms.
The Grobman-Hartman theorem ensures that two dynamical systems are
topologically equivalent close to an equilibrium if the eigenvalues of their
linearizations at corresponding equilibria have the same sign.
A bifurcation is the breakdown of topological equivalence. A parameter α = α0
is a bifurcation point when the systems corresponding to α = α0 + ǫ and
α = α0 − ǫ yield topologically inequivalent dynamical systems, for small ǫ > 0.
Bifurcations manifest a change in the type and stability of limit sets ω(x0).
For instance in the Hodgkin-Huxley model, the applied current parameter Iapp
controls the transition between inactive (equilibrium) and active (spiking) states.
This is illustrated in Fig. 2.3 (left). At Iapp = 0 pA and Iapp = 35 pA , time
trajectories of the model approach a stable equilibrium. In between, for Iapp = 20
pA, the trajectories quickly approach a stead-state spiking behavior, which is a
periodic orbit. The transition between inactive and spiking state in the Hodgkin-
Huxley model that occurs at Iapp ≈ 1.37 is a form of saddle-node bifurcation2.
There are several canonical bifurcations that have been studied over the years,

2The bifurcation is a saddle-node of homoclinic orbits, or a saddle-node on invariant curve (SNIC)
bifurcation.
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that depend on the dimension and nonlinearity of the system. A few of them
are shown in Fig. 2.4.
For bifurcations of equilibria, their behavioral transition is described by a normal
form equation. These equations are polynomial vector fields with a finite number
of terms that are locally topologically equivalent to any system that satisfies the
bifurcation conditions. The Hopf normal form for instance is simply,

ż = (α + i)z ± z|z|2, z ∈ C, (2.23)

where α ∈ R is the bifurcation parameter which is sufficiently small. In
Euclidean terms, the above normal form is in R2. However, a large n-
dimensional dynamical system may also satisfy Hopf bifurcation conditions. In
that case, center manifold theory guarantees the existence of a restriction onto
a linearly attracting/repelling two-dimensional manifold - a center manifold -
where the Hopf normal form describes the flow. This idea is critical to the
projection of high-dimensional datasets onto low-dimensional spaces for model
discovery, which is studied in chapters ahead.
In the case of periodic orbits, bifurcations are described by assessing the map
formed by the action of the dynamical system on a local cross-section - called
a Poincaré map. In this case, bifurcations of the map and their respective
normal forms describe generic behavior. For other invariant sets such as
homoclinic orbits [169] - trajectories that approach an equilibrium both in reverse
and forward time - the bifurcations do not have corresponding normal forms.
Generic behavior in this case is described by means of a model map on a Poincaré
section.
Bifurcation analysis is widely used to determine the onset of behavioral regimes,
quantify points-of-no-return and assimilate the full range of dynamics in
neural modeling. In the Hodgkin-Huxley example, the saddle-node homoclinic
bifurcation at Iapp ≈ 1.37 and the saddle-node of cycles bifurcation at Iapp ≈
29.72 are the two respective thresholds of spiking behavior. One is often
concerned with bistable regimes - parameter domains where two stable states
coexist for a fixed parameter value - as seen in [170, 171, 172]. In the context of
ion dynamics, this could occur when equilibria corresponding to baseline resting
conditions and the depolarized state coexist and are stable [173, 43]. In this case,
therapeutic measures are aimed at moving away from the bistable regime, so
that the baseline resting condition is the only stable equilibrium. In a bistable
regime, the study of critical switching from one stable state to another is called
tipping, see [174, 175] for reviews on the topic.
In spatial and population-based models, periodic orbits and their bifurcations
characterize the onset of spatiotemporal patterns, rhythms and even chaos
[176, 177, 178]. Hyperbolic homoclinic orbits are particularly interesting, as
their parametric perturbation yields at least one periodic orbit. As a result,
homoclinics form boundaries of periodic behavior in models. Zero-Hopf and
saddle-node homoclinic bifurcations control the onset of seizure-like activity in
neural mass models for epilepsy [179, 180, 181, 182]. Homoclinic orbits can also
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determine the onset of bursting behavior for instance, in Morris-Lecar neurons,
see [183, 2] for detailed discussions on bursting. In neural field equations,
travelling pulse solutions are represented by homoclinic orbits in the traveling
wave frame [184, 185, 186]. As Shilnikov chaos revolves around homoclinic
orbits, their existence is associated with rich periodic dynamics in the vicinity.
Bifurcations are an integral part of every chapter ahead. In particular, tipping
phenomena in bistable regimes, slow-fast dynamics in the context of EEG
rhythms, normal forms in data-driven model discovery, and the unfolding of
a new homoclinic bifurcation are discussed.
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Abstract

The anatomical and functional organization of neurons and astrocytes at
‘tripartite synapses’ is essential for reliable neurotransmission, which critically
depends on ATP. In low energy conditions, synaptic transmission fails,
accompanied by a breakdown of ion gradients, changes in membrane potentials
and cell swelling. The resulting cellular damage and cell death are causal
to the often devastating consequences of an ischemic stroke. The severity of
ischemic damage depends on the age and the brain region in which a stroke
occurs, but the reasons for this differential vulnerability are far from understood.
In this chapter, we address this question by developing a comprehensive
biophysical model of a glutamatergic synapse to identify key determinants of
synaptic failure during energy deprivation. Our model is based on fundamental
biophysical principles, includes dynamics of the most relevant ions, i.e., Na+,
K+, Ca2+, Cl− and glutamate, and is calibrated with experimental data. It
confirms the critical role of the Na+/K+-ATPase in maintaining ion gradients,
membrane potentials and cell volumes. Our simulations demonstrate that
the system exhibits two stable states, one physiological and one pathological.
During energy deprivation, the physiological state may disappear, forcing a

27
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transit to the pathological state, which can be reverted when blocking voltage-
gated Na+ and K+ channels. Our model predicts that the transition to the
pathological state is favoured if the extracellular space fraction is small. A
reduction in the extracellular space volume fraction, as, e.g. observed with
ageing, will thus promote the brain’s susceptibility to ischemic damage. This
chapter provides new insights into the brain’s ability to recover from energy
deprivation, with translational relevance for diagnosis and treatment of ischemic
strokes.

3.1 Introduction

Information transfer at synapses [40] critically depends on the cellular
availability of adenosine triphosphate (ATP), the main energy-carrying molecule
in the body. Most of the energy consumption results from the activity of various
ATP-dependent ion pumps, including the Na+/K+-ATPase (NKA). This pump
transports Na+ and K+ ions to maintain physiological ion gradients across the
cell membranes and various other ATPases involved in the release and vesicular
reuptake of neurotransmitters like glutamate [187, 188].
Insufficient availability of ATP quickly results in synaptic transmission fail-
ure [189, 41, 190, 187, 188]. Depending on the depth and duration of energy
deprivation (ED), this is accompanied by a loss of membrane potentials, cell
swelling, and, ultimately, cell death [187, 41, 173, 190]. Several of these processes
are well understood at a phenomenological level. For instance, if NKA activ-
ity is insufficient to counteract cellular Na+ influx, the concentration of Na+

increases within the neuronal and astrocyte compartments [191, 190, 192], and
membrane potentials change. At glutamatergic synapses, the depolarization
of presynaptic terminals causes the opening of voltage-gated Ca2+ channels,
resulting in Ca2+ influx and subsequent glutamate exocytosis into the synaptic
cleft. In addition, lack of ATP causes failure of plasma membrane Ca2+-ATPases,
while Na+/Ca2+- exchangers (NCX) may aggravate intracellular accumulation
of Ca2+ due to their reversal [191, 193, 192]. At the same time, the increase in
neuronal Na+ is accompanied by an increase in intracellular Cl− to maintain
electroneutrality [43], resulting in cell swelling [44]. If NKA activity is com-
pletely absent such as in the core region of an ischemic stroke, ion gradients
evolve to the Gibbs-Donnan potential [194]. All active transport fluxes have dis-
appeared at this equilibrium, and the membrane potential equals the individual
ions’ Nernst potentials. This cascade of events is accompanied by failure of
cellular glutamate uptake through excitatory amino acid transporters (EAATs),
which are mainly expressed by astrocytes [50, 195]. The resulting toxic accumu-
lation of glutamate in the extracellular space (ECS), coupled with intracellular
Ca2+ accumulation, triggers neuronal cell death via multiple pathways [196].
Despite these recent experimental advances in understanding the phenomeno-
logy of energy failure in the brain, there is only limited understanding of the
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interplay of the distinct transporters and ion fluxes of both neurons and sur-
rounding astrocytes under these conditions. The tight anatomical and functional
inter-relationship between pre- and postsynaptic compartments and surround-
ing astrocytes, established about 20 years ago as the tripartite synapse [40], adds
to the challenging complexity of the biological system. The numerous dynam-
ical and nonlinear interdependencies between different transport processes in
the cellular compartments involved can eventually only be elucidated with bio-
physical models, calibrated with experimental data [197]. Motivated by these
considerations, various biophysical models of the tripartite synapse have been
introduced [198, 109, 110]. Some models focus on glutamate release and uptake
in the extracellular space and Ca2+ release from IP3-sensitive Ca2+ stores in
astrocytes [199, 200, 201]. Other works have addressed mechanisms of gliotrans-
mission via vesicular release [101, 100].
A few models describe neuron-glia interactions in pathological conditions,
e.g., to identify mechanisms involved in cell swelling or spreading depression
[43, 105, 202, 203, 204]. Several key questions, however, remain. For example, the
temporal aspects remain mostly unexplored, whereas experimental data shows
that the duration of ED is a crucial parameter. Short durations allow neurons
to recover [191]. Longer, even infinite, durations of ATP depletion lead to the
Gibbs-Donnan potential [43].
A clinically highly significant finding is that the vulnerability to ischemia differs
between brain regions. Here, the differential sensitivity of the cellular and
biophysical determinants is not evident [205, 206, 15]. The age-dependence of
the brain’s cellular vulnerability to ischemic conditions is another highly relevant
phenomenon that is not understood in detail [207]. The expression of many ion
transporters changes significantly during postnatal development and maturation
of neuronal networks. Ageing is associated with down-regulation of NKA and
weakening pump activity [208] and is accompanied by structural changes such
as the fine morphology of astrocytes [209]. However, it is unclear to what extent
this contributes to the age-dependent sensitivity to ischemia. In addition, the
relative size of the ECS changes significantly during life. Whereas the ECS
volume fraction is about 20% of total tissue volume in adult rodents’ forebrain, it
is around 40% in neonates and shrinks to about 15% in aged animals [210]. The
consequences of these changes for the functional interplay between the different
compartments of the tripartite synapse and their relevance for the vulnerability
of tripartite synapses to energy depletion are not understood.
Taken together, we hypothesize that there are a critical duration and depth of
ATP depletion to induce a pathological state. This duration and depth depend
on ion kinetics and geometry. To address this question, we study how the bulk
ion species, i.e., Na+, K+, and Cl−, react to switching off NKA for a specific
duration and depth. Our model also includes Ca2+ and glutamate. Although
we report on their dynamics, we do not study these in detail as they do not
represent the bulk of ions. Nevertheless, it is necessary to include both as they
mitigate large Na+- and K+-currents during energy depletion.
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We propose a novel model combining elements from existing models into a
comprehensive, biologically realistic description. The model includes a neuron
and an astrocyte within a finite extracellular space. For the active transporters
and glutamate release, we formulate a correct electrodiffusive, ion conserving
model. All ion fluxes included in this chapter have been studied and validated
in simpler setups. For most models, it suffices to model K+. For instance,
Kager et al. [211] proposed a microdomain model accounting for all fluxes
with glial behaviour modelled with a K+ bath to study spreading depression.
Later, other researchers [43, 212, 213, 102, 214] have proposed electrodiffusively
correct models. Building on these submodels, we use parameter values from
the literature where possible. We calibrate the remaining ones using recent
experimental data [191].
In this chapter, we first briefly describe the layout of our biophysical model of
the synapse under normal conditions. We show that including the astrocyte
is essential for preserving synaptic transmission. Next, we simulate energy
depletion by switching off NKA. Depending on the duration and depth of
ATP depletion, the system’s state either recovers or ends up in a pathological
equilibrium. We explain these results using bifurcation analysis, allowing us
to identify critical factors determining vulnerability, including the size of the
extracellular volume and NKA pump strength. Finally, our simulation results
agree with experimental data regarding recovery [15], enabling us to explore
how to promote the recovery to the physiological state. Our results aid in our
understanding of the early events following energy depletion. Most notably, our
simulations shed new light on the cellular basis of differential vulnerability of
neurons to ischemic damage.

3.2 A model for ion homeostasis at the tripartite

synapse

We introduce a novel biophysical model, extending our previous work on a
single cell [43] by incorporating more biological detail. The model in [43]
contained a single neuronal compartment in an infinite extracellular space,
whose volume is regulated by changes in osmolarity. Here, we model a neuronal
and astrocytic soma, a presynaptic terminal, the perisynaptic astrocyte process,
the synaptic cleft and a global extracellular space (ECS), illustrated in Fig 3.1.
The volumes of the somatic compartments and ECS can change; the cleft, the
presynaptic terminal and the perisynaptic astrocyte process have fixed volumes.
In each of these compartments, we describe the energy-dependent dynamics
of the ions Na+, K+, Cl−, Ca2+ and glutamate, including vesicle recycling,
by ordinary differential equations (ODEs). We further assume that Ca2+ and
glutamate are confined to the presynaptic terminal, the perisynaptic astrocyte
process and cleft. The concentrations of Na+, K+and Cl− are assumed to be
the same in the synaptic as well as in the somatic compartments. This allows
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us to work with both small molar changes of Ca2+ and glutamate and large
Na+, K+and Cl−gradients across the somatic membranes, within the same
compartmental framework.
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Figure 3.1: Compartments, ion channels and transporters included in the modelling of the
glutamatergic synapse. Shown are the three main components representing a presynaptic
neuron, an astrocyte and the extracellular space (ECS). Each of these compartments also
contains a synaptic compartment as indicated by the different shading and the additional
box (presynaptic terminal, perisynaptic process and synaptic cleft, respectively). The
largest ATP consumption in the presynaptic neuron and the astrocyte is by the Na+/K+-
ATPase (NKA). At the presynaptic terminal, ATP is also needed to energize glutamate
uptake into vesicles. The key transporters at the cleft are the Na+/Ca2+-exchanger (NCX)
and the Excitatory Acid Amino Transporter (EAAT). NKCC1: Na+-K+-Cl−-cotransporter.
KCC: K+-Cl−-cotransporter. Kir4.1: K+ inward rectifier channel 4.1.

3.2.1 Model equations

For an ion X in compartment i, we describe the dynamics of the number of
moles Ni

X and volumes Wi by introducing ion channels and cotransporters Y.
Their currents and fluxes I are given by IX,i

Y . The currents/fluxes I may depend
on gating variables q that describe the nonlinear opening and closing of the
channels/cotransporters. We define concentration [X]i of ion X in compartment
i by [X]i = Ni

X/Wi. A summary of the notation used is shown in Table 3.1.
Thus we obtain the following system of differential equations that describe the
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dynamics of Ni
X and Wi



































d

dt
Ni

X = − 1

zX F ∑
j

IX,i
j ,

d

dt
Wi = λi ∑

X

([X]i − [X]e),

d

dt
q = αq(1− q)− βqq,

(3.1)

where F is Faraday’s constant, zX is the valence of ion X, λi is the osmotic flux
rate for compartment i, and q denotes the Hodgkin-Huxley gating variables. To
model glutamate dynamics in the cleft, we combine existing models of vesicle
recycling from Tsodyks and Markram [215] and Walter et al. [216], as illustrated
in Fig 3.2. Non-releasable glutamate pool (N) is made readily-releasable through
four Ca2+-dependent intermediate steps (R, R1, R2, R3). After release into
the cleft from a fused vesicle, (F), glutamate is removed by presynaptic and
astroglial EAATs and enters the ‘inactive (I)’ state. As a final step, glutamate is
again stored in a vesicle depot (D) and enters the non-releasable pool (N) again.
The rate equations of these states are given by

d

dt
NY = ∑

X

νX([Ca2+]n)NX , (3.2)

where Y and X span over {N, R, R1, R2, R3, I, D, F}. The rate constants
νX depend on Ca2+ concentrations in the neuronal synaptic compartment.
Eqs. (3.1) and (3.2) describe ion and volume dynamics in the neuronal and
astrocyte compartments. To obtain extracellular dynamics, we use three
conservation laws, i.e.,































∑
X,i

zX Ni
X = 0,

∑
i

Wi = CW = constant,

∑
i

Ni
X = CX = constant,

(3.3)

for the preservation of charge, volume, and mass, respectively. Our model is
essentially described by Equations (3.1), (3.2) and (3.3). Here, the constants
CW and CX are the total volume and total molar amount of ions present in the
system, respectively. We present further details in the section Materials and

Methods.

3.2.2 Simulations and model calibration

In the following sections, we present and discuss in silico experiments simulating
ED. We simulate ED by temporary blocking and subsequently restoring of the
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Figure 3.2: Glutamate recycling scheme, inspired by combining vesicle-based models
from [215] and [216]. (Left) Closer view of the model scheme at the synapse and (Right)
the glutamate recycling scheme. Inactive neuronal intracellular glutamate (I) moves to the
depot (D) from where it is packed into vesicles which pass through five stages (N,R, R1,2,3)
before they are released into the synaptic cleft (F). These stages have fast time-constants
that depend on intracellular Ca2+ concentration. The stages Ri correspond to vesicles
that are bound by i Ca2+ ions. The time-constants change when there is influx of Ca2+

in the presynaptic terminal in response to membrane depolarization. Released glutamate
in the cleft can be taken up by astrocytes or back to neurons using excitatory amino acid
transporters (EAATs) or leak channels, thereby recycling the released neurotransmitter.

NKA current in the neuronal and astrocyte compartment. The expression for
the NKA current is given by,

Ii
NKA =

(

Imax
NKA(t)

100

)

Pscale
NKA f i

NKA. (3.4)

The expression f i
NKA describes the inward NKA current. It depends on neuronal

Na+ concentration and extracellular K+concentration. Details can be found
in Materials and Methods. ED is simulated by manipulating the function
Imax
NKA(t), which is the amount of energy available (in %). The function Imax

NKA(t) is
implemented as

Imax
NKA(t) = Pmin + (1− Pmin)Iblock(t), (3.5)

where we have the U-shaped function

Iblock(t) = (1+ exp(β(t − t1)))
−1 + (1+ exp(−β(t − t2)))

−1 ,

(3.6)
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Table 3.1: Notation used in the model equations.

Notation Description

Ni
X Molar amount of ion X in compartment i.

[X]i Concentration of ion X in compartment i.

Wi Volume of compartment i.

IX,i
Y Current/flux contribution of ion channel/transporter Y with respect to

ion X in compartment i.

Vi Membrane potential with respect to compartment i.

zX Valence of ion X.

PX,i
X Permeability/strength/conductance of ion channel/transporter Y with

respect to ion X in compartment i.

Choices for i, X, Y

i n (neuronal soma), a (astrocyte soma), e (extracellular space), ps

(presynaptic terminal), pap (astrocyte process) or c (cleft).

X Na+, K+, Cl−, Ca2+ or glutamate.

Y EAAT, NCX, NKA, KCl, NKCC1, Kir, G (Gated) or L (Leak).

such that

t1 = tstart −
1

β
log(1/Pmin − 1),

t2 = tend +
1

β
log(1/Pmin − 1). (3.7)

The parameter β controls the steepness, tstart denotes the onset time, and tend
denotes the offset time. The parameter Pmin is the minimum available energy
when ED is induced. Fig 3.3A shows how this is implemented.
All the parameters in this model have been sourced from previously published
work. However, we set the parameters αe, Pmin, Pn

NKA(= Pa
NKA) to fit the

experimental traces in [191] using an empirical parameter search. In these
experiments, metabolism is inhibited by exposing cells to ‘chemical ischemia’
for 2 minutes. Recordings are made before, during and after the event. Of
note, the transient drop in ATP levels is not abrupt and lasts longer than 2
minutes. To account for this, we simulate ED for 5 minutes and compare to
compartmental Na+ and extracellular K+ concentrations, see Fig 3.3. As details
about the change of NKA activity resulting from chemical ischemia used in the
experiments are not completely known, we observe some differences in neuronal
and astrocytic Na+ gradients during the onset of ED. In neurons, the presence
of voltage-gated Na+ channels that are activated upon membrane depolarisation
causes a fast and strong Na+ influx. In contrast, the model for astrocytes does
not have any fast, channel-mediated Na+ influx pathway, resulting in lower Na+

rise. Thus, we characterize the chemical ischemia experiments from [191] with
the parameter values αe = 80%, Pmin = 50% and Pn

NKA = 86.4 pA, and use them
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Figure 3.3: Model calibrations reproduce experimental data. (A) Plot of Imax
NKA(t) versus

time t. ED begins at t = tstart min. and ends at t = tend min. while being
reduced to a minimum of Pmin. (B,C) Experimental traces from [191] (left) and the
corresponding model simulations (right) with (B) showing intracellular sodium for
neurons and astrocytes and (C) showing extracellular sodium and potassium. Empirically
adjusted parameters: Pmin and α0e (initial extracellular volume fraction) were chosen by
fitting model dynamics qualitatively to Na+ and K+ concentration time-traces. Here,
Pmin = 50% and α0e = 80%. The difference in Na+ increase between neurons and
astrocytes is attributed to the presence of fast Na+ influx through voltage-gated Na+

channels in neurons, which are lacking in astrocytes. Please note that scaling axis in
panels B and C may slightly differ between experiments and simulations for optimal
display purposes.

for further simulations presented in this chapter.
We summarize the various simulations performed ahead in Table 3.2. Apart
from finite-time ED, we also perform simulations for different values of
Pscale and αe. This can have consequences on other parameters. Pscale
scales the baseline NKA strength Pi

NKA, making it stronger (Pscale > 1) or
weaker (Pscale < 1). Upon changing Pscale from its default value of 1, the
equilibrium corresponding to the initial (baseline) conditions disappears. To
fix this equilibrium, we recompute all leak permeabilities PX,i

L whenever Pscale is
changed.
The parameter αe is the initial extracellular volume ratio and is given by

αe =
W0

e

Wtot
. (3.8)

We fix the initial volumes W0
n and W0

a , and choose the extracellular volume to
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Table 3.2: Parameter values for all simulations performed. Units are presented in the
same manner as they are implemented in the Python code.

Simulation Parameter values Description

Calibration

Pmin = 50%
αe = 80%
Pscale = 1

tstart = 5 min.
tend = 10 min.

Parameters used to calibrate to
the two-minute in vitro chemical
ischemia experiments performed in
[191].

Excitation

Pmin = 100%
αe = 80%
Pscale = 1

max(Iexcite) = 20 pA
(4 times, 10s)

Exciting the neuron in the presence
and absence of the astrocyte.

ED

Pmin = 50%
αe = 20% (Small ECS)
αe = 80% (Large ECS)
Pscale = 1 (normal)
Pscale = 2 (strong)
tstart = 5 min.
tend = 10 min. (short)
tend = 20 min. (long)

Transient ED for a) long and short
duration, b) small and large sur-
rounding extracellular volume and
c) normal and stronger NKA pump
strength.

be

W0
e = αe(W

0
n + W0

a )(1− αe)
−1,

Wtot = W0
n + W0

a + W0
e . (3.9)

3.3 Results

3.3.1 Astrocytes and ion homeostasis

We first assess the contribution of the astrocyte to the extra- and intracellular ion
homeostasis under physiological conditions. For this, we stimulate our neuron
with a 10-second long pulse of square wave input with magnitude 25 pA, both
with and without a functional astrocyte (Fig 3.4). Simulations are performed
with a realistic initial extracellular volume fraction for mature rodent cortex [210]
by setting αe = 20% and full ATP availability (Pmin=100%). When the astrocyte
is functional, the current injection (black trace) induces a burst of neuronal
action potentials (in total 475 during 10 s) and transient depolarizations of the
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astrocyte. The burst firing of neurons is accompanied by a transient decrease in
extracellular Na+, while neuronal Na+ increases, consistent with experimental
data [217]. On the other hand, in our simulation, astrocytic Na+ slightly
decreases in response to neuronal burst firing. After stimulation subsides, both
membrane potentials and ion concentrations return to baseline, see Fig 3.4A.
Profiles of Ca2+ and other ion fluxes are presented in Fig 3.12.
When the astrocyte is non-functional (simulated by blocking all astrocyte ion
transport), the neuron irreversibly depolarizes during the burst (Fig 3.4B). This
new state is accompanied by a significant accumulation of Na+ in the neuronal
soma following Na+ entry via voltage-gated Na+ channels. As astrocytic
K+ uptake via Kir4.1, NKA and NKCC1, is blocked, K+ accumulates in the
extracellular space, resulting in a sustained depolarization block of the neuron.
As the continued Na+ influx is higher than NKA-mediated Na+ efflux, the
neuron accumulates even more Na+ and does not recover even after excitation
ends. This irreversibly depolarized state is accompanied by an increased volume
of the intracellular compartments resulting from an increase in intracellular Na+

and Cl−.
Upon restoring astrocytic function, the neuron and astrocyte do not return to
their initial resting membrane voltage (Fig 3.4B). Membrane potentials remain at
approximately -30 mV, and input currents can no longer trigger action potentials.
From the two simulations performed Fig 3.4A and 3.4B, we see that two stable
resting states are possible, i.e., the system displays bistability. The first state
corresponds to membrane potentials of approximately -65 mV (neuron) and -
80 mV (astrocyte), respectively, with functional synaptic transmission, i.e. the
physiological state. The second corresponds to a pathological state with non-
functional neurons and astrocytes, and impaired synaptic transmission.

3.3.2 Dynamics after varying periods of ED

We know from experimental observations that energy depletion results in
accumulation of Na+ in neurons and astrocytes while extracellular K+ increases
see, e.g. [44, 191]. At the (thermodynamic) equilibrium, the Nernst
potentials of Na+ and K+ reach equal values. During this evolution towards
equilibrium, neurons can generate oscillatory depolarizations, known as anoxic
oscillations [189, 173]. These drive Ca2+ into the presynaptic terminal by
activating of voltage-gated Ca2+ channels (VGCCs) which triggers the release
of glutamate into the cleft. The efflux of K+ does not fully compensate the
increase in intracellular Na+. Thus, intracellular Cl− increases to preserve
electroneutrality [218]. The resulting osmotic imbalance leads to water influx,
i.e., cell swelling [44].
We first simulate such dynamics by setting the available energy Pmin to 50% of
baseline activity at an initial extracellular volume ratio αe = 80% for 5 minutes,
shown in Fig 3.5A. Similar to experimental observations, reduced NKA activity
leads to an increase in intracellular Na+ and extracellular K+. Reactivated NKA
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Figure 3.4: Shown are the time courses of the membrane potential, sodium and potassium
concentrations, cell volume and glutamate in response to a current pulse (25 pA, 10 s,
black trace) with (A) and without (B) a functional astrocyte. (A) In response to the pulse,
there is a burst of action potentials and return to baseline of all quantities. (B) Without a
functional astrocyte, the neuron depolarizes after the burst, and remains in this state, even
if the astrocyte function is restored. Here, we plot neuronal (blue), astrocyte (orange) and
extracellular (green) traces against time for several quantities. The initial extracellular
volume ratio is αe = 20%. The shaded red area corresponds to periods during which ion
transport across the astrocytic plasma membrane is blocked.

restores the Na+ and K+ gradients, so membrane potentials recover to baseline
in agreement with experiments [191, 15]. Changes in cell volume are below 5%,
i.e., they are negligible for this simulation.
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Figure 3.5: ED for 5 minutes (A) and 15 minutes (B) demonstrates the existence of
two stable states: 1) before ED (baseline resting state) and 2) after prolonged ED of 15
minutes (stable depolarized state). Here, we plot neuronal (blue), astrocyte (orange) and
extracellular (green) traces against time for several quantities. The initial extracellular
volume ratio αe = 80% and minimal energy available Pmin = 50%. Shaded grey areas
correspond to the period where Na+/K+-ATPase (NKA) activity is gradually reduced to
Pmin and restored to baseline, identical to Fig 3.3A.

However, when we extend the duration of ED from 5 to 15 minutes, Na+

accumulation in the neuron is much larger than in the previous scenario. A
depolarization block results, where the membrane potential approaches a stable
pathological state of about -35 mV. As shown in Fig 3.5B, the increase in
intracellular Na+ and Cl− (see Fig 3.13) causes an osmotic imbalance resulting
in cell swelling. Na+ accumulation in the astrocyte reduces EAAT activity,
preventing successful clearance of excess cleft glutamate. Upon restoring energy,
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astrocytic Na+ recovers and enables EAAT to drive glutamate into the astrocyte.
At the same time, in contrast, neuronal EAAT activity weakens, which prevents
sufficient reuptake of glutamate into the presynaptic terminal. As a result,
during ATP depletion, transport of glutamate into presynaptic vesicles is initially
diminished, see neuronal EAAT current in Fig 3.13. Further, ion gradients do
not return to physiological values, and permanent cell swelling is observed
(approximately 20% increase in neuronal, and 10% in astrocytic volume). This
occurs once again due to bistability. After a sufficiently long, but transient,
period of ED resulting in both neuron and astrocytic reduction of NKA activity,
the physiological state is not restored, as reflected by persistent membrane
depolarization and increased cell volume. This contrasts with the scenario
presented in Fig 3.5A, where the physiological state is restored for a shorter
duration of ED. Time-traces for concentrations of Cl− and Ca2+ are presented
in Fig 3.13.

3.3.3 Determinants for recovery

Various determinants other than the depth and duration of ED have been
proposed to be critical for recovery of synaptic transmission failure after ED,
including the size of ECS, pump strength, and the role of the gating variables.
Using our model, we explore their importance in the potential of neuronal
recovery after (transient) ED.

Size of the extracellular volume

Recovery from a depolarization block after energy restoration was addressed
experimentally in [15]. Neurons from two different brain regions were subjected
to 15 minutes of zero energy conditions. Magnocellular neuroendocrine cells
recovered, while pyramidal cells remained depolarized post energy restoration
(see also Fig 3.8). As argued in [219], this may result from different ECS
volume fractions. We now explore this hypothesis in our model by changing
the baseline value of the parameter αe (the extracellular volume fraction in
%). In Fig 3.6A, we simulate ED for 5 minutes for αe = 80% (large ECS) and
αe = 20% (small, realistic ECS) and plot the relative neuronal volume change
after 30 minutes of energy restoration. The parameter Pmin is set to 50%. For
αe = 80%, we observe no volume increase, which corresponds to a successful
recovery after energy restoration, and vice-versa for αe = 80%. Further, we
simulate ED during 5 minutes for different values of αe and Pmin and plot
the relative neuronal volume change after 30 minutes of energy restoration.
We find that compartmental volumes (and thus, membrane potentials and ion
concentrations) recover for larger values of αe. This result implies that neurons
and astrocytes surrounded by smaller extracellular spaces exhibit a relatively
higher vulnerability to transient ED.
We provide further insight into the selective sensitivity to ECS size using
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Figure 3.6: Differential sensitivity of ED to initial extracellular volume ratio αe (A)
and to baseline Na+/K+-ATPase strength factor Pscale (B). (A) We deprive the neuron
and astrocyte of energy for 5 minutes before restoring it to baseline and report the
relative volume 30 minutes after restoration. We show two examples, (A.1) for large ECS
(αe = 80%) and (A.2) for realistic ECS (αe = 20%). Here, we plot neuronal (blue), astrocyte
(orange) and extracellular (green) traces against time for compartmental volume change.
(B) We deprive the neuron and astrocyte of energy for 15 minutes before restoring it
to baseline, for two different values of Pscale and αe. We show neuronal and astrocyte
membrane potentials against time. The grey area in (B.1-4) illustrates the period of
ED. The table in the middle indicates whether the system recovers (green) post energy
restoration or not (red).

bifurcation diagrams shown in Fig 3.7A. We show diagrams for both αe = 20%
and αe = 80% as a function of the available energy Pmin. We plot initial neuronal
volume (in %) against Pmin, after setting Imax

NKA(t) = Pmin as constant. We obtain
two branches of resting states. Solid (red/blue) lines correspond to stable resting
states, while the dashed blue branches correspond to unstable resting states.
The bifurcation diagram can be interpreted by following the stable resting
states. We start at the blue line at Pmin = 100%, which corresponds to the
baseline physiological state. As we lower NKA activity in the neuron and
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Figure 3.7: Tipping in a bistable regime (A) and the change in tipping behavior by
introducing pharmacological blockers (B). In (A.1a and A.2a), we plot bifurcation
diagrams with respect to Pmin for αe = 20% (realistic ECS) and αe = 80% (large ECS). Red
curves are pathological branches, and blue curves are physiological branches. Dashed
lines represent unstable parts. The only two relevant local bifurcations are limit point
(star) and Hopf (inverted triangle). The inset shows two additional bifurcations, a
pitchfork (dot) and a Hopf. We show two simulations (A.1b and A.2b), short ED (5
minutes, cyan curve) and long ED (15 minutes, pink curve), both for Pmin = 50%. In (B),
we block different pathways during ED (green area, B.1, B.2 and B.3) and after restoration
(green area, B.4). For (B.1-3), energy is deprived for 5 minutes for parameters αe = 80%
and Pmin = 50%. In (B.4), energy is deprived for 15 minutes for parameters αe = 80%
and Pmin = 50%.
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Experimental findings [15] Model simulations

Figure 3.8: Experimental findings from Brisson and Andrew [15] (reproduced with
permission) and our model simulations. (A) (Left) Membrane depolarization of a
pyramidal neuron during 10 minutes of oxygen glucose deprivation (OGD), that persists
after restoring energy. (Right) Model simulations on the right show the neuronal(blue)
and astrocyte membrane potentials. ED (OGD) is introduced for 15 minutes (red line).
Here, αe = 80% and Pmin = 0%. The dynamics are faithfully reproduced, including
anoxic oscillations at the initial phase of depolarization. (B) (Left) Membrane potential
of a magnocellular neuroendocrine cell, showing a similar depolarization during 15
minutes oxygen glucose deprivation and full recovery after this period. Both at the
start of the depolarization and during recovery action potentials are generated. (Right)
Model simulations. ED (OGD) is introduced for 15 minutes (black line). Here, αe =
80%, Pmin = 0% and Pscale = 2. With these parameter settings, the membrane potential
recovers to baseline conditions after the period with ED. Note that during recovery, the
experimentally observed oscillations are also faithfully simulated.

astrocyte, we move to the left, along the solid blue curve. For values lower than
Pmin = 63.93%, the blue curve does not exist. Decreasing Pmin, the physiological
branch disappears via a limit point bifurcation (star). For αe = 80%, the limit
point occurs at Pmin = 57.4%. At this bifurcation point, unstable (dashed blue
line) and stable (solid blue line) resting states merge. For lower values of Pmin,
to the left of the limit point, the pathological state is the only stable resting state.
The loss of bistability here explains the transition to the pathological state during
ED.
This is further illustrated with two simulations where energy is deprived for
5 (turquoise trace) and 15 minutes (magenta trace) for Pmin = 50%. These
simulations are presented simultaneously in the bifurcation diagram (Fig 3.7A.1a
and 3.7A.2a) and the time traces (Fig 3.7A.1b and 3.7A.2b). When energy
is deprived for 5 minutes, the system transits to the pathological state for
αe = 20% and does not recover to the physiological state. For αe = 80%, the
same simulation results in recovery. However, upon restoring energy later (15
minutes, orange trace), the synapse transits to the pathological resting state for
both values of αe. During energy restoration, the system’s state slides along the
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red curve. When we return to Pmin = 100%, the pathological state is still stable,
implying that recovery is impossible without further intervention. As the pump
is already fully activated, this resting state would become unstable only if its
maximal strength Pmin is increased above 145% of its initial value, at which a
Hopf bifurcation occurs (inverted triangle), which is biophysically unrealistic.
The pathological and physiological resting state curves are much farther apart
for αe = 80% than for αe = 20%. Moreover, for αe = 80%, the limit point
bifurcation (star) is further to the left (i.e. more severe ED). This shows that the
transition to the pathological state occurs at larger values of Pmin for synapses
with a small ECS (small αe).

Pump strength

Next, we explored the consequences of different pump strengths on the recovery
of membrane potentials and ion dynamics after transient ED. We mimic this
behaviour by changing the baseline maximum NKA current. We thus change
the parameter Pscale

NKA. At baseline, Pscale
NKA = 1. When Pscale

NKA > 1, NKA becomes
stronger by a factor Pscale

NKA. We keep the baseline conditions (ion concentrations,
volumes and membrane potentials) fixed by changing the leak permeabilities of
K+ and Na+ in neurons and astrocytes.

We first simulate ED for 15 minutes in large ECS (αe = 80%) and realistic
ECS (αe = 20%), shown in Fig 3.6B.1 and 3.6B.2. Here, we set Pscale

NKA to 1 and
Pmin to 0%. In both cases, neuronal and astrocyte membranes depolarize and
do not recover after energy is restored. Note that it takes longer to reach the
peak depolarization for neurons in large ECS, in agreement with observations
in the bifurcation diagram (Fig 3.7A). In Fig 3.6B.3 and 3.6B.4, we show results
of the simulations with Pscale

NKA = 2. This corresponds to NKA being twice as
strong. In both cases, the membrane potentials transit to a stable depolarization
block during the period of ED. In both cases, the synapse now returns to the
physiological resting state after energy restoration. In the case of αe = 80%,
the neuronal membrane potential closely mimics experimental findings for
magnocellular neuroendocrine cells [15] (see Fig 3.8B). We also observe that the
neuron undergoes transient spiking immediately before recovery. This spiking
results from a Hopf bifurcation, shown in the corresponding bifurcation diagram
(Fig 3.7A). When Pscale

NKA > 1, the Hopf bifurcation shifts to the left (not shown).
In this case, the corresponding Hopf bifurcation has shifted left of Pmin = 100%.
The Hopf bifurcation is supercritical, which implies that a stable periodic orbit
is born. This periodic orbit disappears before Pmin = 100%. Thus the neuron
generates action potentials while it transits through the small parameter regime
where the periodic orbit exists (Fig 3.6B.4). When Imax

NKA reaches 100%, the
periodic orbit disappears, and the membrane potential returns to baseline.
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Pharmacological blockers

We simulate various scenarios observed experimentally where neurons and
astrocytes in acute tissue slices of mouse brain were subjected to ED in the
presence of an inhibitor of EAATs (TFB-TBOA) or NCX [191]. We first set
αe = 80% and Pmin = 50%, identical to Fig 3.5, and present four scenarios,
illustrated in Fig 3.7B. First, we block EAAT transport (B.1) during the duration
of ED, which blocks EAAT-mediated Na+ influx into astrocytes. As a result,
neurons and astrocytes depolarize before returning to baseline. Second, blocking
NCX transport (B.2) has a stronger effect on membrane potentials, and both
cells do not recover after restoring energy. During ED, NCX reverses, and thus
mediates Na+ efflux in low energy conditions, a phenomenon also suggested in
experimental observations [191]. Blocking NCX transport promotes the cellular
depolarization of the neuron and the astrocyte, driving them to the irreversible
pathological state.
Third, motivated by experimental evidence [44] and modelling work [43], we
explore the potential for recovery after blocking neuronal Na+ influx pathways.
We first simulate a short duration of ED (Pmin = 50%) simultaneously blocking
the voltage-gated Na+ channel, upon which the neuron barely depolarizes
(Fig 3.7B.3). Next, we consider the system after it has transited to a stable
pathological state after longer ED, shown in (Fig 3.7B.4). Subsequently, we block
the voltage-gated Na+ channel of the neuron for 10 minutes. We observe that
the neuron repolarizes and transits to the physiological resting state, with the
restoration of all other ion concentrations and cell volume.
Motivated by this, we block neuronal K+ efflux pathways to explore the potential
for recovery. As before, we consider the system after it has transited to a stable
pathological state, after longer ED. Blocking the voltage-gated K+ channel for
10 minutes (Fig 3.7B.4), which is the major K+ efflux pathway in the neuron,
results in neuron and astrocyte repolarisation, and the entire system transits to
the stable physiological resting state, as before ED.
In Fig 3.9, we demonstrate synaptic recovery after blocking the voltage-gated
Na+ channel and voltage-gated K+ channel. We set αe = 80% and subject the
neuron to ED for 15 minutes (Pmin = 50%). Then, as the neuron has transited to
the pathological state, between t = 30 and t = 40 minutes, we stimulate the cell
with 25 pA current for 10 seconds, identical to Fig 3.4. Glutamate transients in
the cleft during this period are shown in Fig 3.9A.1 (Na+ channel) and Fig 3.9B.1.
In both cases, the relative change in glutamate is about 10%, which is less than
the change in glutamate transients in the physiological state (about 30%), shown
in Fig 3.4A. Next, we block voltage-gated Na+ and K+ channels for 10 minutes
(green region), bringing the system back to the physiological state. We then test
synaptic recovery by applying the same stimulation to the neuron, 70 minutes
after the block. The stimulation now induces a burst in the neuron and glutamate
transients in the cleft, identical to Fig 3.4A, thereby demonstrating restoration of
physiological synaptic function.
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A.1 A.2

A.1

B.1 B.2

A.2

B.1

B.2

Figure 3.9: Neuronal stimulation upon recovery from ED shows different glutamate
transients as compared to neuronal stimulation in a pathological state. Recovery from
ED is achieved by blocking neuronal voltage-gated Na+ channels (A) and blocking
neuronal voltge-gated K+ channels (B). Glutamate in the cleft (green trace) and neuronal
membrane potential (blue trace) are shown, in response to neuronal excitation in
physiological and pathological conditions. First, ED is simulated between t = 5 and
t = 20 minutes (Pmin = 50%, αe = 80%). Then, neurons are subjected to 25 pA square
wave input for 10 seconds, as indicated by the black trace. The system is then brought
back to the physiological state by blocking voltage-gated Na+ channels (shaded green
area). After a little more than an hour, the neurons are subjected again, to 25 pA square
wave input for 10 seconds.

Finally, we mention that, apart from neuronal Na+ and K+ voltage-gated
channels, blocking any other ion channel did not assist in recovery from the
pathological state, see Fig 3.14.

3.3.4 Glial chloride homeostasis under ischemia

In [12], fluorescence lifetime imaging microscopy (FLIM) was used, along with
the chloride-sensitive dye MQAE to study glial Cl− concentrations under both
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Figure 3.10: Iterative optimization of NKCC1 and KCC flux rates in neocortical astrocytes.
(A) Predicted [Cl−]a under resting conditions and changes during or after energy
restriction for various normalized KCC and NKCC1 flux rates. NKCC1 flux rates Pa

NKCC1
were varied between 1% and 100% of baseline values and the KCC flux rate Pa

KCl between
1% and 500% of baseline values. (B) Predicted changes in astrocytic [Cl−]a under resting
conditions, under blocking conditions (light gray block: bumetanide, R-(+)-DIOA or
DL-TBOA) as well as during or after energy restriction for multiple KCC normalized
flux rates (0.01-5) at fixed baseline Pa

NKCC1. At 20 min after the start of transport
inhibition, transient ischemia (energy deprivation) was simulated by blocking neuronal
and astrocyte NKA for 10 min (dark gray block), followed by energy restoration for 30
min in the presence of the mentioned blocker. For a KCC flux rate that is 3.5 times the
baseline value, the predictions of the model are in best agreement with experimental
results with blockers as well as with blockers under energy restriction. Red boxes
show in (A) and (B) evaluated flux rates for neocortical astrocytes. Abbreviations: Bum:
bumetanide; DIOA: R- (+)-DIOA; TBOA: DL-TBOA.
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Figure 3.11: Differences in cortical and DG chloride homeostasis can be described by
variation in glial KCC and NKCC1 expression levels in a mathematical model of the
tripartite synapse. (A) Log–log plot of the KCC flux rate against the NKCC1 flux rate
relative to baseline flux rates. Two distinct regions in this two-parameter space account
for the results obtained with cortical (blue) or DG (green) [Cl−]a. The indicated regions
correspond to parameter values with qualitative agreement with experimental traces.
(B) Predicted changes in astrocytic [Cl−]a without blocker under conditions used in
experiments. Left panel, cortex; right panel; DG. (C) The model was subjected to block
of a specific chloride transport system (light gray block: bumetanide, R-(+)-DIOA or DL-
TBOA) for the first 30 min. At 20 min after the start of transport inhibition, transient
ischemia (energy deprivation) was simulated by blocking neuronal and astrocyte NKA
for 10 min (dark gray block), followed by energy restoration for 30 min in the presence
of the mentioned blocker. Upper panel, cortex; lower panel, DG. Abbreviations: DG,
dentate gyrus; ED, energy deprivation; DIOA, R-(+)-DIOA; TBOA, DL-TBOA.
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control conditions and conditions that mimic ischemic energy restriction. The
resting [Cl−]a was determined in acute brain slices of four types of glial cells:
hippocampal astrocytes in the dentate gyrus (DG) and cornu ammonis region
1 (CA1), hippocampal radial glialike (RGL) cells, and neocortical astrocytes. A
marked regional heterogeneity was observed in glial ion concentration. Using
specific blockers, the auhtors identified key chloride transport proteins that
determine glial chloride homeostasis and assessed their contribution to [Cl−]a
and cell volume in the tested brain regions. Although chloride transport
depends on processes that are affected during ischemia, only slight absolute
changes in [Cl−]a upon transient chemical ischemia.
In this section, we modify the current model to include the KCC transporter
in the astrocyte in order to understand how changes in anion transporter
activity shape the response to transient energy restriction. The model equations
and conductance is set identical to the neuronal KCC transporter. Anion
conductances generated by EAAT anion channels are represented as components
of the astrocyte leak anion conductance. Since the Cl−/HCO3exchanger AE3, is
not expressed in glial cells [220, 221], no HCO3 transporter was integrated into
the model.
In [12], it is shown that neocortical and DG astrocyte represent two extremes
in both resting [Cl−]a and changes in [Cl−]a following the selective inhibition
of anion transporters. As NKCC1 is the dominant Cl− influx and KCC the
dominant Cl− efflux pathway in our model, we manipulated resting [Cl−]a and
changes of [Cl−]a in response to energy restriction by varying the rates of these
two transporters. With the exception of Cl−, Na+ and K+leak conductances, all
other parameters remained unchanged from the original model.
Fig. 3.10 illustrates the iterative approach we used in optimizing these two
parameters for the example of neocortical astrocytes. We modify normalized
NKCC1 flux rates (Pa

NKCC1) between 1 and 100% and normalized KCC
flux rates between 1 and 500% of these baseline values. For each set of
Pa

KCl and Pa
NKCC1, we calculate changes in neocortical [Cl−]a under resting

conditions, as well as during and after transient energy restriction. Variation
of secondary active transporters requires adjustment of the leak conductances of
the transported substrates to ensure that the sum of ion fluxes remains zero
under resting conditions. For Pa

NKCC1 between 0.01 and 0.1 of the starting
values, tenfold or hundredfold decreased KCC rates require implausibly low
Cl− leak conductances that result in continuously increasing [Cl−]a after energy
restriction (Fig. 3.10-A) These predictions are in disagreement with experimental
results in [12], and these parameter values are discarded. The initial test thus
demonstrates that Pa

NKCC1 must be around the starting values. The response of
our model to energy restriction alone, however, does not suffice to restrain Pa

KCl.
We thus test the effects of varying Pa

KCl at Pa
NKCC1 fixed to the baseline value

on the consequences of pharmacological block of glial anion transporters, see
Fig. 3.10-B. 3.5-fold increased Pa

KCl flux rates predicts best the effect of the KCC
blocker DIOA on astrocytic [Cl−]a in neocortical astrocytes and was thus used
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for further analyses.

Using this approach, we find two distinct parameter regions corresponding
to [Cl−]a measured in cortical and DG astrocytes, see Figs. 3.11-B,C. They
are shown in a log–log plot of the NKCC1 and KCC flux rates in Fig. 3.11-
A: cortical results are well described by higher numbers in functional KCCs
(approximately 10 times) in astrocytes than in neurons; and results for DG
astrocytes are well described by lower numbers in both functional NKCC1
(about 10 times lower than in the cortex) and KCCs (about 100 times lower
than neuronal KCC). Within the tested parameter ranges, no bifurcations are
observed in the two-parameter space. Astrocytic [Cl−]a smoothly changes upon
parameter variation, and simulation results are consistent with experiments in
[12], also for large perturbations of the parameters. The effect of DL-TBOA
is simulated by blocking both neuronal and astrocyte glutamate transport and
partially blocking astrocytic Cl− leak currents (Fig. 3.11-C). In the cortex, DL-
TBOA causes a sharp increase in [Cl−]a, followed by a plateau (at +200% of
baseline). In contrast, in the DG DL-TBOA causes a slow rise to +5% of baseline
at the end of the ischemic block. The EAAT anion conductance is modeled as
part of a glial resting anion conductance (leak conductance). Since the exact
contribution of EAAT anion channels to the total resting anion conductance is
unknown, we vary the degree of resting conductance blockade by DL-TBOA,
but find no discernible differences.

Moderate transient ischemia is initially simulated by blocking the NKA in
both neurons and astrocytes to 50% of baseline activity. In these simulations,
astrocytes are subjected to energy deprivation for 5 or 10 min and then allowed
to recover for 15 or 10 min, respectively (Fig. 3.11-B; gray shading). Additionally,
astrocytes are treated with bumetanide (to block NKCC1), R-(+)-DIOA (to
block astrocytic KCCs), or DL-TBOA (to block neuronal and astrocyte EAAT)
for 20 min (light gray region), followed by energy deprivation for 10 min
(dark gray block), and then another 30 min of transport block after energy
restoration (Fig. 3.11-C). In response to transient ischemia for 5 min, [Cl−]a in
DG hippocampal astrocytes change only slightly, whereas cortical astrocytes
undergo a transient increase in [Cl−]a that is fully reversible by restoring
NKA after 5 min of energy restriction (Figure 9B). In response to 10 min
energy restrictions, simulated [Cl−]a rises to a larger extent than observed in
experiments, for cortical as well as for DG astrocytes. However, experimentally
observed differences between the two classes of astrocytes are reproduced;
cortical astrocytes reacts with larger chloride accumulation to ATP restriction
than DG astrocytes (Fig. 3.9-B). In DG astrocytes, bumetanide triggers Cl− efflux
under control conditions, and additional chemical ischemia changes the effects
only slightly (Fig. 3.11-C, lower panel). R-(+)-DIOA causes small increases in
[Cl−]a after chemical ischemia in DG astrocytes.
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3.4 Discussion

We present a detailed biophysical model of energy-dependent ion fluxes in
different compartments and of changes in cellular membrane potentials of the
tripartite synapse to further our understanding of their dynamics in low energy
conditions. We calibrate the model to Na+ and K+ concentration time-traces
obtained from in-situ chemical ischemia experiments [191]. We demonstrate that
astrocyte function is instrumental in maintaining physiological ion gradients
for action potential generation and proper synaptic transmission. Crucially, the
model indicates that surrounding extracellular volume size and baseline NKA
pumping capability controls the ischemic vulnerability of the neuron-astrocyte
interaction. Further, bifurcation analysis shows how the bistability depends
on extracellular volume. Finally, we show that intervention through blocking
voltage-gated Na+ channels can revive the system from a pathological state.

3.4.1 Loss of synaptic function depends on the depth and
duration of ischemia

In resting conditions, our model shows astrocyte and neuron membrane
potentials close to the K+ Nernst potential, similar to experimental observations.
Loss of NKA-mediated Na+ and K+ transport results in intracellular Na+ and
extracellular K+ accumulation and membrane depolarization, in accordance
with experimental observations [15, 191] and previous simulations [43]. As
expected [222], astrocytic dysfunction in our simulations also results in
disruption of K+ homeostasis and cessation of synaptic transmission, even in
conditions with initially preserved neuronal function. However, upon neuronal
stimulation, astrocytic Na+ decreases. Earlier experimental work performed in
brain tissue slices [217] has shown that most astrocytes undergo an increase in
intracellular Na+ during neuronal bursting activity. However, in about a third of
cells, the increase was rather brief and was followed by an undershoot in [Na+]i.
This undershoot could be mimicked by increasing extracellular K+, indicating
that it was due to activation of astrocyte NKA. Moreover, the combined addition
of glutamate and high K+ caused a biphasic increase-decrease in some cells,
indicating that both processes - activation of NKA resulting in an export of Na+

and activation of glutamate uptake resulting in an import of Na+ - counteract
each other. Notably in our model, NKA-induced export of Na+ is higher than
EAAT-mediated Na+ uptake in astrocytes.
If the partial and transient ED is sufficiently long, no recovery occurs. During
low energy conditions, glutamate in the cleft can rise to several hundred µM or
even a few mM [223] and excitotoxic cell death will eventually follow [196].
The persistent increase in glutamate during the duration of ED is faithfully
reproduced in our simulations (Fig 3.5B).
Our model simulations during low energy conditions also agree with the
experimental findings from [15], shown in Fig 3.8: during oxygen-glucose
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deprivation (OGD) neurons depolarize and cease firing action potentials after
a short period of anoxic oscillations. We further show that the neuron can show
bistable behaviour: even after cessation of OGD (simulated by restoring pump
activity), the neuron can remain in a depolarized, pathological, state (Fig 3.8A).

3.4.2 Ischemic vulnerability depends on the extracellular
volume fraction and baseline pump strength

Our simulations in Fig 3.6 show that a smaller ECS makes the neurons and
astrocytes more likely to depolarize as the extracellular ion gradients will change
faster; further, a smaller ECS makes it more likely that neurons and astrocytes
remain in the pathological state, which is further illustrated by the bifurcation
diagrams in Fig 3.7. We conclude that synapses surrounded by smaller ECS
are more vulnerable to ED. For a larger ECS, the basins of attraction are farther
apart in state space, making it less likely for the trajectory to escape from the
physiological equilibrium to the pathological one. These simulations predict that
synapses with smaller extracellular spaces are less likely to recover from ED. As
the ECS size significantly declines with ageing [210, 207], this may aggravate
ischemic damage to the aged brain [224].

We also simulated the recovery observed in magnocellular neurons by changing
the baseline pump strength with the parameter Pscale

NKA in Fig 3.8B. The neuron
makes a few transient oscillations before returning to baseline, which was
indeed observed in [15]. In this case, the Hopf bifurcation (inverted triangle)
in Fig 3.7A shifts further to the left. Increasing baseline pump strength makes
the physiological state the only stable resting state at baseline by moving the
position of the Hopf bifurcation. The importance of baseline pump strength
may also explain the experimental observation of Brisson and Andrew, showing
that transient oxygen-glucose deprivation has differential effects on the potential
for recovery of neurons in the hypothalamus and thalamus [15]. In similar
experiments [225, 226], the difference in NKA activity due to varying α-isoform
expression was highlighted as a possible governing factor for recovery.

We remark that our findings are at variance with an earlier modelling study,
showing that smaller ECS size improves the recovery of neurons from transient
ATP depletion [219]. In this model [219], that comprised Na+, K+ and Cl−

currents of a presynaptic neuron and the Na+/K+-ATPase, the role of glia
was limited to K+ buffering and passive extracellular K+ diffusion. This
modelling choice may underlie the divergent findings in our simulations, where
an extended role for astrocytes together with ECS volume restrictions allows
persistent K+ accumulation in the ECS.
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3.4.3 Neurons can be rescued from the pathological equilibrium
state

In agreement with experimental observations [15], our simulations also show
that a pathological state may persist after energy restoration. Phenomenologic-
ally, this persistence results from a persistent Na+ current (the window current)
at a membrane voltage near -30 mV [227, 43], that is too large to be counteracted
by the Na+/K+ pump. The system can be rescued from this state, however,
by a temporary blockage of voltage-gated Na+ and K+ currents, see Figs 3.7B
and 3.9. We show that blocking Na+ influx via voltage-gated Na+ channels
and K+ efflux via voltage-gated K+ channels serves to recover neuronal and
astrocytic membrane potentials and Na+/K+ homeostasis. Moreover, in this re-
covered state, healthy synaptic function is resumed as demonstrated by exciting
the neuron in Fig 3.9, where glutamate transients also return to the physiological
range, identical to Fig 3.4A.
Our prediction regarding voltage-gated Na+ channels agrees with previous
modelling work, see [43]. While a study in rats after middle cerebral
artery occlusion showed significantly improved neurological outcome after
treatment with the Na+ channel blocker valproic acid [228], to our knowledge,
no experimental data have been reported that explicitly support this model
prediction. Our prediction regarding voltage-gated K+ channels is novel with
respect to current modelling literature. An experimental study showed that
using the K+ channel blocker tetraethylammonium (TEA) was able to attenuate
ischemia-triggered apoptosis in neurons [229]. However, to our knowledge,
similar to the case with voltage-gated Na+ channels, there is no experimental
data that directly supports our prediction regarding K+ channels.
Decrease in NKA activity in neurons and astrocytes creates an imbalance of
Na+ and K+ gradients, causing net compartmental Na+ influx and K+ efflux.
In that context, it is not too surprising that our model predicts that blocking
major Na+ and K+ pathways in the neuron presents a potential pathway for
recovery from the pathological state post ED. However this is not the case for
astrocytes. Blocking any of the Na+ or K+ pathways post ED in the astrocyte
(see supplementary figure 3.14) does not perturb the pathological state. This can
be attributed to the fact that in our model, there is no astrocytic Na+ influx or
K+ efflux process that contributes to large gradients, compared to the neuronal
voltage-gated channels.

3.4.4 Differential Cl− responses to ischemia

Our model predicts that the varying Cl− responses to ischemia in different
brain regions are attributed to the differential expression of the cotransporters
KCC and NKCC1. In cortical astrocytes, the model predicts a bumetanide-
mediated reduction of [Cl−]a that is partially reversed by energy restriction. This
prediction differs from experimental observations in [12], in which bumetanide
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had only minor effects under control conditions, but decreased [Cl−]a in
combination with chemical ischemia. In simulations, R-(+)-DIOA causes massive
Cl− influx into the cortex (+300% of baseline), which is further enhanced by
ischemic conditions and not reversed by energy restoration. This result is
qualitatively, but not quantitatively similar to experiments in [12]. A possible
explanation for the deviation between simulated and experimentally observed
[Cl−]a is provided in Fig. 3.15, in which changes in [Cl−]a are compared for
blocking NKA to 60% baseline pumping capacity with the results upon 50%
reduction from Fig. 3.11. At higher remaining pump activity, the model predicts
[Cl]int in DG astrocytes almost perfectly (Figure 10B). With less pronounced
block of NKA, the model predicts fully reversible changes in [Cl−]a for cortical
astrocytes after 10 min of chemical ischemia. In cortical astrocytes (Fig. 3.15-
A), the combination of chemical ischemia for 10 min with bumetanide reduces
[Cl−]a to 6 mM in model astrocytes, closely similar to experimental results
in [12]. The effects of R-(+)-DIOA are comparable at 50 and 60% percentage
remaining pump activity, and the TBOA effect is fully reversible at 60% rest
activity. Pronounced differences in [Cl−]a changes upon small variations in
NKA activity (Fig. 3.15) are expected when simulating ion concentrations under
ischemic conditions.

3.4.5 Relation to other computational models

This chapter extends the single-neuron formalism in [43] to a neuron-
astrocyte interaction that describes biophysical processes in synaptic and somatic
compartments. There have been several computational studies of neuronal
dynamics in the context of energy failure [204, 203, 105, 173], while other
studies have explicitly modelled astrocyte dynamics in the context of spreading
depression, astrocyte Ca2+ signaling and physiological function [102, 94, 200]. To
the best of our knowledge, however, no other computational study has explicitly
modelled astrocyte dynamics nor did they include Na+, K+, Cl−, Ca2+ and
glutamate dynamics into a single model in the context of ED. In this chapter,
we combine the dynamics of these five ions to provide a holistic description of
ion and volume dysregulation during low energy conditions. Further, the model
considers physical laws that arise in limiting cases, such as the Gibbs-Donnan
equilibrium, which is reached when pump activity is absent. This provides
a platform to extend the current formalism by introducing more ions, cellular
compartments and transport mechanisms.

3.4.6 Modelling limitations

Our model has certain limitations, too. First, we assume spatially uniform
compartments and ignores transmission delays, which is not the case in
reality. We do not consider the diffusion of ions across the extracellular space,
which extends to other synapses as well. Simulating in a finite volume may
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cause exaggerated extracellular concentrations to appear, which speeds up the
pathological effects of ED. However, this will not affect the bifurcation diagram
structure, but only how tipping between the two basins of attraction occurs
during short term ED. We also do not include astrocyte gap junctions which
may change their permeability during low energy conditions and operate in
the same timescale as membrane depolarization [230]. However, their role in
mitigating extracellular K+ uptake is debated.

3.4.7 Future directions

The current formulation of the model incorporates ion transients in synaptic
and somatic compartments and predicts bistable behaviour in response to
ischemia. Adding another neuron with a postsynaptic terminal will allow us to
make predictions regarding synaptic transmission in ischemic conditions and to
compare presynaptic versus postsynaptic vulnerability to such conditions. The
first predictions from our model about glutamate transients can benefit from
models such as [231] to include the glutamate-glutamine cycle, which is critical
to the dynamics of neurotransmitter replenishment. Moreover, by introducing
pH regulation, also the sodium-bicarbonate cotransporter (NBCe1) [232] and
the sodium-proton exchanger (NHE) could be incorporated. These mechanisms
will increase Na+ transport into astrocytes, and might result in a net increase in
astrocytic Na+ with physiological stimulation, improving the current model.
We introduced a model of the tripartite synapse that describes ion and
volume dynamics at synaptic and somatic levels. The model faithfully
reproduces biological observations and identifies potential treatment targets
to limit permanent synaptic failure in clinical conditions characterized by
temporary energy failure. The model predicts that synapses surrounded by
smaller extracellular spaces are more vulnerable to ischemia and that differential
expression of baseline NKA may explain regional differences in ischemic
vulnerability. Further, it predicts that blocking neuronal voltage-gated Na+ and
K+ channels rescues the synapse from the pathological state post transient ED.
Moreover, the model allows us to include additional processes and combine
with more models from current literature to create a mathematical description of
critical events concerning synaptic regulation in physiological and pathological
conditions at the tripartite synapse.

3.5 Materials and methods

3.5.1 Ion concentrations and membrane potentials

The model describes the dynamics of molar amounts Ni
X of the ions Na+, K+,

Cl−, Ca2+ and glutamate, and compartmental volumes Wi, for i = {n, a}. The



56 Chapter 3. Ion dynamics of the energy-deprived tripartite synapse

corresponding membrane potentials follow from the relation,

Vi =
F
Ci

∑
X

zX Ni
X , (3.10)

where i = {n, a} and zX is the valence of the ion/species X. The ions X also
include impermeable ions A− and B+ in each of the somatic compartments. This
is necessary to maintain a non-zero resting membrane potential across the semi-
permeable neuronal and astrocyte membranes. The molar quantities of these
ions are unknown, we estimate them from baseline conditions in the section
Estimating parameters. Assuming that Na+, K+ and Cl− concentrations are the
same in the somatic and synaptic compartments, we get

[X]n = NX/Wn = [X]ps,

[X]a = NX/Wa = [X]pap,

[X]e = NX/We = [X]c, X ∈ {Na+, K+, Cl−}. (3.11)

The volumes Wps, Wc, Wpap are constant. We further assume that all glutamate
and Ca2+ in the neurons and astrocytes are located in the synaptic compart-
ments. Thus,

[Y]n = NY/Wps = [Y]ps,

[Y]a = NY/Wpap = [Y]pap,

[Y]e = NY/Wc = [Y]c, Y ∈ {Ca2+, Glu }. (3.12)

In the following sections, we elaborate on how the dynamics of ion amounts
Ni

X an volumes Wi are described in the model. The values of a few common
parameters, such as fixed volumes and physical constants, are presented in
Table 3.3.

3.5.2 Neuronal dynamics

The following currents/fluxes are used to describe neuronal somatic dynamics:

1. voltage-gated Na+, K+, Cl− and Ca2+ channels,

2. Na+/K+-ATPase (NKA),

3. K+-Cl−-cotransporter (KCC),

4. Na+/Ca2+-exchanger (NCX), which is described in the section Synaptic

dynamics;

5. and Excitatory Amino Acid Transporter (EAAT), which is described in the
section Synaptic dynamics.

Parameters corresponding to all processes in the neuronal compartment can be
found in Table 3.4.
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Table 3.3: Common model parameters along with sources. Units are presented in the
same manner as they are implemented in the Python code. All adjusted parameters are
in the same order of magnitude as their original counterparts.

Constant Value Description

Cn, Ca 20 pF Membrane capacitance [43]
F 96485.333 [C mol−1] Faraday’s constant

R 8314.4598 [C(mV)(mol
K)−1]

Universal gas constant

T 310K Room temperature [43]
Wps 10

−3 [1000µm3] Fixed presynaptic terminal volume
[233]

Wc 10
−3 [1000µm3] Fixed synaptic cleft volume (Empir-

ical, chosen to be same as Wps)

Wpap 10
−3 [1000µm3] Fixed perisynaptic astrocyte pro-

cess volume (Empirical, chosen to
be same as Wps)

3.5.3 Conservation laws

The model has constant total volume Wtot, i.e.

∑
i

Wi = Wtot. (Cons.1)

As a consequence we get a conservation law for ionic molar amounts giving

∑
i

Ni
X = CX , (Cons.2)

where the sum is over all compartments, for each ion X. As the net charge in
the system must be zero, we have, at all times

∑
X

zXCX + ∑
Y,i

zY Ni
Y = 0, (Cons.3)

where Y contains the impermeable cations and anions. The equations (Cons.1-
Cons.3) give us the three conserved quantities. As a consequence, we can now
describe extracellular dynamics from

We = Wtot − Wn − Wa,

[X]e =
1

We

(

CX − ∑
i 6=e

Ni
X

)

. (3.13)

Voltage-gated currents and leak channels

The Goldman-Hodgkin-Katz (GHK) currents are solutions to the Nernst-Planck
equations that describe the electrodiffusive flux of ions across a permeable
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membrane when we assume membrane homogeneity and instantaneous and
independent movement of ions. We use the GHK currents to model voltage-
gated and leak currents [234]. The gating variables are from [211] and are similar
to those in the Hodgkin-Huxley model. The currents are as follows,

INa+ ,n
G = PNa+ ,n

G m3hGHK(Vn, [Na+]n, [Na+]e),

IK+ ,n
G = PK+ ,n

G n4GHK(Vn, [K+]n, [K+]e),

ICa2+ ,n
G = 4PCa2+ ,n

G m2hGHK(Vn, [Ca2+]n, [Ca2+]e), (3.14)

where m, h and n are Hodgkin-Huxley gating variables. The expression for the
calcium channel is obtained from [21]. The function GHK(Vy, [X]y, [X]e) is given
by,

GHK(Vy, [X]y, [X]e) =
F2Vy

z2XRT

[X]y − [X]e exp
(

− FVy

zXRT

)

1− exp
(

− FVy

zXRT

) . (3.15)

The dynamical equations for q are given by Eq. (3.1) where q = {m, h, n}. The
voltage-dependent expressions αq and βq are given by,

αm =
0.32(V + 52)

1− exp(−(V + 52)/4)
, βm =

0.28(V + 25)

exp((V + 25)/5)− 1
,

αh = 0.128 exp(−(V + 53)/18), βh =
4

1+ exp(−(V + 30)/5)
,

αn =
0.016(V + 35)

1− exp(−(V + 35)/5)
, βn = 0.25 exp

(

−V + 50

40

)

.

(3.16)

Note that this is different from the subscript n, which refers to the neuronal
somatic compartment. They have the same expressions as in [211]. For the Cl−

gated current, we adopt the choice from [43],

ICl− ,n
G =

PCl− ,n
G

1+ exp
(

−Vn+10
10

) GHK(Vn, [Cl−]n, [Cl−]e). (3.17)

All the leak currents are modelled as GHK currents

IX,n
L = PX,n

L GHK(Vn, [X]n, [X]e). (3.18)

Active transport across neuronal membrane: Na+/K+-ATPase (NKA)

The NKA exchanges three Na+ for two K+ by consuming one molecule of
adenosine triphosphate (ATP). It is modelled as a function of intracellular Na+
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and extracellular K+ as in [235] by the following flux,

In
NKA(t) =

(

Imax
NKA(t)

100

)

Pscale
NKA fNKA =

(

Imax
NKA(t)

100

)

Pscale
NKAgNKA×

[Na+]1.5
n

[Na+]1.5
n + (αn

NKA)
1.5

[K+]e
[K+]e + (βn

NKA)
, (3.19)

where

gNKA =

(

1+ 0.1245 · exp
(

−0.1
FVn

RT

)

+ 0.0365 · σ · exp
(

− FV

RT

))

, (3.20)

and

σ =
1

7
·
(

exp
(

[Na+]e
67.3

)

− 1

)

, (3.21)

where Pn
NKA is the NKA permeability or the pump strength. Pscale

NKA is the scaling
factor which we vary in simulations to scale the strength of NKA and the
function Imax

NKA(t) is used to simulate energy derivation for some time period.
They are also explained in the section Simulations and model calibration. The
corresponding Na+ and K+ currents are given by

INa+ ,n
NKA = 3In

NKA(t),

IK+ ,n
NKA = −2In

NKA(t). (3.22)

Secondary active transport across neuronal membrane: K+-Cl−-cotransporter

The K+-Cl−-cotransporter (KCC) is a symporter that allows one Cl− ion and
K+ to leave the neuron, along its concentration gradient. It is the main extruder
for Cl− ions in the neuron, thereby providing a counterforce to the gated Cl−

channel, which mediates a massive influx of Cl− after Na+ loading in neurons
[236, 42, 237, 238, 239]. We model the flux as the difference of the K+ and Cl−

Nernst potentials as in [102],

JKCl =
RT
F

ln
(

[K+]e[Cl−]e
[K+]n[Cl−]n

)

. (3.23)

The corresponding K+ and Cl− currents are given by

IK+ ,n
KCl = FJn

KCl,

ICl− ,n
KCl = FJn

KCl. (3.24)

3.5.4 Astrocyte soma

Astrocytes possess a wealth of membrane ion channels and transporters,
which allow them to detect, respond and modulate neuronal activity. Major
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tasks fulfilled by astrocytes at glutamatergic synapses are the regulation
of extracellular K+ homeostasis and the re-uptake of synaptically-released
glutamate [240]. In this section, we describe the incorporated relevant ion
channels/cotransporters that govern astrocyte dynamics during physiological
conditions and in response to metabolic stress. We use the following
currents/fluxes to describe astrocyte somatic dynamics:

1. Kir4.1 channel,

2. Na+/K+-ATPase (NKA),

3. Na+-K+-2Cl−-cotransporter (NKCC1),

4. Na+/Ca2+-exchanger (NCX), which is described in the section Synaptic

dynamics;

5. and Excitatory Amino Acid Transporter (EAAT), which is described in the
section Synaptic dynamics.

Table 3.5 lists all parameters corresponding to astrocyte fluxes/currents.

Kir4.1 channel

The weakly inwardly rectifying K+ channel Kir4.1 is highly expressed in
astrocytes and maintains the resting membrane potential [48, 241], close to the
K+ reversal potential. We choose the model from [242], as it allows the current to
vanish at the Gibbs-Donnan condition. This property is not present in recently
published models on Kir4.1, such as [104]. The current is given by,

IK+ ,a
Kir = PKirm∞

[K+]e
[K+]e + 13

(Va − Ea
K+), (3.25)

with

m∞ =

(

2+ exp
(

1.62
F

RT
(Va − Ea

K+)

))−1

, (3.26)

where Ea
K+ is the K+ reversal potential in the astrocyte,

Ea
K+ =

RT
F

log
[K+]e
[K+]a

. (3.27)

Active transport: Na+/K+-ATPase

The NKA in the astrocyte follows the exact same model as that in the neuron, as
in [102]. The NKA current in the astrocyte is given by,

Ia
NKA =

(

Imax
NKA(t)

100

)

Pscale
NKA fNKA =

(

Imax
NKA(t)

100

)

Pscale
NKAgNKA×

[Na+]1.5
a

[Na+]1.5
a + (αa

NKA)
1.5

[K+]e
[K+]e + (βa

NKA)
, (3.28)
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where

gNKA =

(

1+ 0.1245 · exp
(

−0.1
FVa

RT

)

+ 0.0365 · σ · exp
(

−FVa

RT

))

, (3.29)

and

σ =
1

7
·
(

exp
(

[Na+]e
67.3

)

− 1

)

, (3.30)

where Pa
NKA is the astrocyte NKA pump strength. Thus the corresponding Na+

and K+ currents are given by

INa+ ,a
NKA = 3Ia

NKA(t),

IK+ ,a
NKA = −2Ia

NKA(t). (3.31)

Na+-K+-2Cl−-cotransporter (NKCC1)

The astrocyte K+ removal mechanism is complemented by the inward Na+-
K+-2Cl−-cotransporter (NKCC1), which is highly expressed in astrocytes [240].
NKCC1 is a symporter and transports one Na+ , one K+ and two Cl− into the
astrocyte. It is activated by high extracellular K+ and plays a major role in
astrocyte swelling [243, 244]. Astrocyte Cl− regulation also crucially depends on
NKCC1 [245, 246]. The flux is proportional to the difference of Nernst potentials
of the respective ions as is done in [102] and is given by

Ja
NKCC1 = Pa

NKCC1

RT
F

log

(

[Na+]e
[Na+]a

[K+]e
[K+]a

(

[Cl−]e
[Cl−]a

)2
)

. (3.32)

Thus the corresponding Na+, K+ and Cl− currents are given by

INa+ ,a
NKCC1 = −FJa

NKCC1,

IK+ ,a
NKCC1 = −FJa

NKCC1,

ICl− ,a
NKCC1 = 2FJa

NKCC1. (3.33)

Leak currents

So far, we only have an inward NKCC1 flux to model movement of Cl− in
the astrocyte. We approximate the remaining fluxes as passive electrodiffusive
currents via the Goldman-Hodgkin-Katz formula for ion currents,

IL,a
X = PL,a

X GHK(Va, [X]a, [X]e), (3.34)

where the formula for GHK(·, ·, ·) is given by Eq. (3.15), and X =
{Na+, K+, Cl−}.
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3.5.5 Synaptic dynamics

This section describes the dynamics of Ca2+ and glutamate in the synaptic
cleft and their coupling to the dynamics of Na+, K+ and Cl− via the
transporters NCX and EAAT. We assume that the volumes of these synaptic
compartments remain small and fixed during the first few hours of metabolic
stress. Note that, as previously introduced in Eq. (3.11) and (3.12), we assume
that all of their ions are confined to the ‘synaptic compartments’ only, i.e., the
presynaptic terminal, synaptic cleft and astrocyte process. We now describe the
relevant channels/cotransporters acting in the synaptic compartments and the
mechanism of glutamate recycling in the cleft.

Glutamate transport (EAAT)

The re-uptake of synaptically released glutamate is mediated by high-affinity,
Na+-dependent glutamate transporters (EAATs). EAATs are expressed by both
presynaptic terminals and astrocytes, with astrocytes mediating about 90%
of glutamate uptake in the CNS [50]. The cotransporter protein carries one
glutamate molecule, three Na+ and one H+ into the cells in exchange for one
K+. The transport yields a net double positive charge influx. We model EAAT
in the same way the KCC and NKCC1 cotransporters are modelled. Thus, the
EAAT current is written as,

Ji
EAAT = Pi

EAAT

RT
F

ln

(

[Na+]3e
[Na+]3i

[K+]i
[K+]e

[H+]c
[H+]i

[Glu ]c
[Glu ]i

)

. (3.35)

The corresponding ion currents are

INa+ ,i
EAAT = −3FJi

EAAT,

IK+ ,i
EAAT = FJi

EAAT,

IGlu ,i
EAAT = FJi

EAAT. (3.36)

In our model, we do not model the dynamics of protons, but we keep the ratio
[H+ ]c
[H+ ]a

constant [247]. The constant is chosen from modelling work done in [213],

where EAAT forms a part of the biophysical description of ion homeostasis at
the postsynaptic cradle.

Na+/Ca2+-exchanger (NCX)

The Na+/Ca2+-exchanger NCX allows Na+ to flow along its concentration
gradient into the neuron/astrocyte in exchange for Ca2+. It is expressed
across various cell types, including neurons and astrocytes. Thus, three Na+

are imported in exchange for one Ca2+, yielding a net positive charge to the
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compartment. The notable aspect about NCX is that it reverses when [Na+]
increases in the respective compartment [191].
We follow the model from [235], which describes the NCX current by

Ii
NCX = Pi

NCX

(

[Na+]3e
α3Na+ + [Na+]3e

)

(

[Ca2+]c
αCa2+ + [Ca2+]c

)

×

[Na+ ]3i
[Na+ ]3e

exp
(

ηFVi
RT

)

− [Ca2+ ]i
[Ca2+ ]c

exp
(

(η−1)FVi
RT

)

1+ kNCX exp
(

(η−1)FVi
RT

) . (3.37)

The corresponding Na+ and Ca2+ currents are given by

INa+ ,i
NCX = 3Ii

NCX,

ICa2+ ,i
NCX = −Ii

NCX. (3.38)

Vesicular recycling

In response to action potentials that reach the presynaptic terminal and
consequent Ca2+ elevations, glutamate is released into the synaptic cleft. This
process involves packing of the neurotransmitter into synaptic vesicles, which
fuse with the presynaptic membrane following formation of the SNARE complex
[248]. The packing of glutamate into vesicles by vesicular glutamate transporters
(VGLUTs) depends on [Cl−] and on a proton gradient across the vesicular
membrane, which is mediated by an ATP-dependent proton pump. It was
suggested that VGLUT expression declines with age, although these ideas still
remain inconclusive [249]. In this chapter, we assume that vesicular packing and
recycling is not directly energy-dependent. This allows us to see what happens
during partial ED when Na+/K+-ATPase is affected, but glutamate continues
to be efficiently packed into vesicles.
To model vesicular recycling, we combine models from [215] and [216], see
Fig 3.2. The model proposed by Walter et al. [216] describes the sequential
slow-fast mechanism of packing glutamate into vesicles, depending on Ca2+

elevations. The sequence models the pathway of glutamate from a large storage
pool (called depot) to the irreversible fused state, which is when glutamate
is released into the synaptic cleft by the interaction of vesicles with SNARE
proteins lined up on the presynaptic membrane. The cycle is then completed by
plugging in the model by Tsodyks and Markram [215] which models glutamate
recycling back into the depot. The equations for the inactive (I) and fused
(F) state are then adjusted to include the uptake of glutamate via EAAT and
electrodiffusive leak currents. This is done by removing the linear term for
recruitment of glutamate from the fused state back into the inactive state, and
replacing it with terms for EAAT and leak dynamics. The dynamical equations
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for the various states of glutamate are given by,


































































































d

dt
NI =

d

dt
Nn

Glu = − 1

τrec
NIND +

1

F

(

IGlu ,n
EAAT + IGlu ,n

L

)

,

d

dt
ND =

1

τrec
NIND − k1ND + k−1NN,

d

dt
NN = k1ND − (k−1 + k2)NN + k−2NR,

d

dt
NR = k2NN − (k−2 + 3k3[Ca2+]n)NR + k−3NR1

,

d

dt
NR1

= 3k3[Ca2+]nNR − (k−3 + 2k3[Ca2+]n)NR1
+ 2k−3NR2

,

d

dt
NR2

= 2k3[Ca2+]nNR1
− (2k−3 + k3[Ca2+]n)NR2

+ 3k−3NR3
,

d

dt
NR3

= k3[Ca2+]nNR2
− (3k−3 + k4)NR3

.

(Mod.1)

The coefficient k1 is taken from [216]

k1 = k1,max
[Ca2+]n

[Ca2+]n + KM
(3.39)

where KM is the half saturation Ca2+ concentration in the presynaptic terminal
to recruit vesicles from the depot into the non-releasable pool. The coefficients
k2 and k−2 are taken from [216]

k2(Ca2+) = k20 + g(Ca2+)k2cat,

k−2(Ca2+) = k−20 + g(Ca2+)k−2cat, (3.40)

where the probability for a Ca2+-bound catalyst g(Ca2+) is given by [216]

g(Ca2+) =
[Ca2+]

[Ca2+] + KDv
. (3.41)

From the molar amounts of the various states of glutamate, we can define
glutamate concentrations in the neuron and cleft. Thus,

[Glu ]n = [Glu ]ps =
1

WPreSyn
Nn

Glu =
1

WPreSyn
(NI) (3.42)

and
[Glu ]c =

1

Wc
Nc

Glu =
1

Wc
NF. (3.43)

All parameters corresponding to vesicular recycling can be found in Table 3.6.
The expression for NF is derived from conservation laws, see section Conserva-

tion laws.
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3.5.6 Volume dynamics

The exact channels for water movement between the extracellular space, neuron
and astrocytes is are still debated today [250, 251]. In this chapter, we assume it
to depend linearly on the osmotic pressure gradient across the membrane. We
follow the model from [43] to model the volume compartmental volume Wi as

d

dt
Wi = Li

H2O∆πi, (Mod.2)

where ∆πi is the osmotic pressure gradient given by,

∆πi = RT ∑
X

([X]i − [X]e), (3.44)

for X, Y ∈ {Na+, K+, Cl−} and i ∈ {n, a}. From Eq. (3.1), we then obtain the
relation

λi = Li
H2ORT. (3.45)

3.5.7 Model equations

The dynamics of individual ion amounts based on the described ion currents is
given by


















































































































































d

dt
Nn

Na+ = − 1

F

(

INa+ ,n
G + INa+ ,n

NKA + INa+ ,n
EAAT + INa+ ,n

NCX + INa+ ,n
L

)

+
1

F
Istim(t),

d

dt
Nn

K+ = − 1

F

(

IK+ ,n
G + IK+ ,n

NKA + IK+ ,n
EAAT + IK+ ,n

KCl + IK+ ,n
L

)

,

d

dt
Nn

Cl− =
1

F

(

ICl− ,n
G + ICl− ,n

KCl + ICl− ,n
L

)

,

d

dt
Nn

Ca2+ = − 1

2F

(

ICa2+ ,n
G + ICa2+ ,n

NCX + ICa2+ ,n
L

)

,

d

dt
Nn

Glu =
1

F

(

IGlu ,n
EAAT + IGlu ,n

L

)

,

d

dt
Na

Na+ = − 1

F

(

INa+ ,a
NKCC1 + INa+ ,a

NKA + INa+ ,a
EAAT + INa+ ,a

NCX + INa+ ,a
L

)

,

d

dt
Na

K+ = − 1

F

(

IK+ ,a
NKCC1 + IK+ ,a

NKA + IK+ ,a
EAAT + IK+ ,a

Kir + IK+ ,a
L

)

,

d

dt
Na

Cl− =
1

F

(

ICl− ,a
NKCC1 + ICl− ,a

L

)

,

d

dt
Na

Ca2+ = − 1

2F

(

ICa2+ ,a
NCX + ICa2+ ,a

L

)

,

d

dt
Na

Glu =
1

F

(

IGlu ,a
EAAT + IGlu ,a

L

)

,

(Mod.3)
where Istim(t) is a square-wave current used to stimulate the neuron when we
perform neuronal stimulation experiments, such as in Fig 3.4. The equations
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(Mod.1-Mod.3) together give the model. The initial values used, are shown in
Tables 3.7 and 3.8. However, we have not described extracellular dynamics yet.
These are obtained directly from conservation laws, which we describe in the
following section.

3.5.8 Estimating parameters from conservation laws

In order to maintain physiological resting states, we incorporate impermeable
ions in the system. Biophysically these correspond to large proteins that are
unable to move across the cell membrane. We calculate them directly from
conservation equations. At rest, the right-hand side of Eq. (Mod.2) must be
equal to zero. From this, we get two rest conditions,











∑
X

([X]n − [X]e) = 0,

∑
X

([X]a − [X]e) = 0,
(Rest.1)

where X accounts for all ions (including impermeable ones) in the system. At
baseline conditions, Eq. (3.10) and (Cons.3) provide three more rest conditions,



































∑
X

zXCX + ∑
Y,i

zY Ni
Y = 0,

V0
n =

F
Ci

∑
X

zX [X]0nW0
n ,

V0
a =

F
Ci

∑
X

zX [X]0aW0
a ,

(Rest.2)

where Y = {A−, B+} are the impermeable ions. Using Eq. (Rest.1) and (Rest.2),
we compute the constants Nn

A− , Ne
A− , Ne

B+ , Na
A− and Na

B+ .
We assume that total glutamate in the presynaptic terminal amounts to 2 mM.
Thus,

∑
Z

N0
Z = 2× Wps, where Z ∈ {I, N, D, R, R1, R2, R3}. (Rest.3)

Thus, from Eq. Rest.3 and by setting the right hand side of Eq. 3.2 to 0 at baseline
conditions, we can compute all initial conditions corresponding to the various
glutamate stages.
The leak permeabilities PX,i

L are computed by setting the dynamical equations of
Ni

X from Eq. Mod.3 to zero at rest conditions. Note that for glutamate and Ca2+

dynamics, we assume constant volumes of the presynaptic terminal, synaptic
cleft and perisynaptic astrocytes processes.
The various parameters estimated in this section are laid out in Table 3.9.
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3.5.9 Python implementation

The code is implemented in Python and is available publicly at
github.com/mkalia94/TripartiteSynapse. The simulations were made with
the CVode solver, implemented in the Python package assimulo.
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Figure 3.12: Extension of Fig 3.4 . Here, we further plot Cl− and Ca2+ concentration
profiles, along with important ion gradients. (B) shows that astrocytes are critical for
maintaining ion homeostasis when Na+/K+-ATPase (NKA) is fully functional. Here,
we plot neuronal (blue), astrocyte (orange) and extracellular (green) traces against time
for several quantities. The initial extracellular volume ratio αe = 20%. Shaded red
area corresponds to periods during which ion transport across the astrocytic plasma
membrane is blocked. Neurons are subjected to a 25 pA square wave input, as indicated
by the black trace. The burst contains 475 action potentials. The green extracellular
calcium trace has an offset of 1.8 mM.
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Figure 3.13: Extension of Fig 3.5. Here, we further plot Cl− and Ca2+ concentration
profiles, along with important ion gradients. We plot neuronal (blue), astrocyte (orange)
and extracellular (green) traces against time. The initial extracellular volume ratio
αe = 80% and minimal energy available Pmin = 50%. Shaded grey areas correspond
to the period where Na+/K+-ATPase (NKA) activity is gradually reduced to Pmin and
restored to baseline after 5 minutes ( left panel) or 15 minutes (right). This temporal
profile is indicated in the upper panel.
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Figure 3.14: Extension of Fig 3.7B. We introduce pharmacological blockers post ED by
blocking various ion channels/cotransporters to look for potential for recovery from
the ED-induced pathological state. In all of the cases presented, the pathological state
remains stable even after channel blockade. We plot neuronal (blue) and astrocyte
(orange) membrane potentials against time. The initial extracellular volume ratio
αe = 80% and minimal energy available Pmin = 0%. Shaded grey areas correspond
to the period where Na+/K+-ATPase (NKA) activity is gradually reduced to Pmin and
restored to baseline after 15 minutes. The shaded light green area corresponds to channel
blockade.
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Figure 3.15: Predicted cortical and DG astrocyte chloride dynamics at NKA activity
reduced to 50 or 60% of the baseline activity during chemical ischemia (energy
deprivation). Time-dependent changes in [Cl−]a for neocortical (A) and DG (B) astrocytes
by reducing neuronal and astrocyte NKA activity for 10 min (dark gray block) to 50%
(blue line) or to 60% (yellow line) of baseline. The model was subjected to block of
a specific chloride transport system (light gray block: bumetanide, R-(+)-DIOA or DL-
TBOA). At 20 min after the start of transport inhibition, transient ischemia was simulated
followed by energy restoration for 40 min in the presence of the mentioned blocker.
Abbreviations: DG, dentate gyrus; ED, energy deprivation; DIOA, R-(+)-DIOA; TBOA,
DL-TBOA.
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Table 3.4: Model parameters for the neuronal compartment, along with sources. Units
are presented in the same manner as they are implemented in the Python code. All
adjusted parameters are in the same order of magnitude as their original counterparts.

Constant Value Description

PNa+ ,n
G 8× 10

−4 [1000µm3(ms)−1] Voltage-gated Na+ channel per-
meability [43]

PK+ ,n
G 4× 10

−4 [1000µm3(ms)−1] Voltage-gated K+ channel per-
meability [43]

PCl− ,n
G 1.95× 10

−5 [1000µm3(ms)−1] Voltage-gated Cl− channel per-
meability [43]

PCa2+ ,n
G 1.5× 10

−5 [1000µm3(ms)−1] Voltage-gated Ca2+ channel per-
meability [252]

Pn
NKA 86.4 [pA] Maximal NKA current (Empirically

scaled, of same magnitude as in
[43])

αNa+
NKA 13 [mM] NKA: Half-saturation con-

centration for intracellular
Na+(Empirical, adjusted from
[235])

αK+

NKA 0.2 [mM] NKA: Half-saturation concentra-
tion for extracellular K+(Empirical,
adjusted form [235])

Pn
KCl 1.3× 10

−6 [fmol (ms mV)−1] KCl cotransporter strength [43]

Pn
NCX 10.8 [pA] NCX exchanger: scaling factor,

identical to astrocyte

αNa+
NCX 87.5 [mM] NCX exchanger: half saturation

concentration for Na+[235]

αCa2+

NCX 1.38 [mM] NCX exchanger: half saturation
concentration for Ca2+[235]

ηNCX 0.35 [dimensionless] NCX exchanger: position of the
energy barrier that controls voltage
dependence of NCX current [235]

kNCX 0.1 [dimensionless] NCX exchanger saturation factor at
very negative potentials [235]

Pn
EAAT 10

−6 [fmol (ms mV)−1] Neuronal EAAT cotransporter
strength, chosen to be of the same
magnitude as KCl and NKCC1
cotransporters

αn
H+ 0.66 [dimensionless] Ratio of extracellular to intracellu-

lar proton concentration

Ln
H2O 2 × 10

−14 [1000 µm3 mPa−1

ms−1]
Neuronal membrane water per-
meability [43]
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Table 3.5: Model parameters for the astrocyte compartment, along with sources. Units
are presented in the same manner as they are implemented in the Python code.

Constant Value Description

Pa
Kir 0.286102 [nS] Kir4.1 conductance, taken from

[242] after multiplying with
baseline surface area.

Pa
NKCC1

7.3215 × 10
−7 [fmol (ms

mV)−1]
NKCC1 cotrasporter strength
(taken from [102] after multipying
with baseline surface area)

Pa
EAAT 2×10

−5 [fmol (ms mV)−1] Astrocyte EAAT cotransporter
strength, chosen to keep astrocyte
to neuronal baseline EAAT current
ratio at 9:1.

Pa
NKA 86.4 [pA] Maximal NKA current (Empirically

scaled to fit experimental data from
[191], of same magnitude as in [43])

αNa+
NKA 13 [mM] NKA: Half-saturation concentra-

tion for intracellular Na+[235]

αK+

NKA 0.2 [mM] NKA: Half-saturation concentra-
tion for extracellular K+[235]

Pa
NCX 5.7 [pA] NCX exchanger: Maximal NCX

current, chosen in accordance with
[214] as 1/15 of maximal NKA
current.

αNa+
NCX 87.5 [mM] NCX exchanger: half saturation

concentration for Na+[235]

αCa2+

NCX 1.38 [mM] NCX exchanger: half saturation
concentration for Ca2+[235]

ηNCX 0.35 [dimensionless] NCX exchanger: position of the
energy barrier that controls voltage
dependence of NCX current [235]

kNCX 0.1 [dimensionless] NCX exchanger saturation factor at
very negative potentials [235]

αa
H+ 0.66 [dimensionless] Ratio of extracellular to intracellu-

lar proton concentration

La
H2O 2 × 10

−14 [1000 µm3 mPa−1

ms−1]
Astrocyte membrane water per-
meability [43]
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Table 3.6: Model parameters for glutamate recycling, along with sources. Units are
presented in the same manner as they are implemented in the Python code.

Constant Value Description

kmax
1

1 [ms−1] Maximum forward reaction rate
(Empirical)

KM 2.3×10
−3 [mM] Ca2+ half-saturation concentration

for forward reaction rate (Depot to
Non Releasable Pool) [216]

KDv
1×10

−4 [mM] Half-saturation concentration for
forward reaction rate (Non releas-
able pool to readily releasable pool)
[216]

k20 2.1×10
−5 [ms−1] Uncatalysed forward reaction rate

[216]

k2cat 2×10
−2 [ms−1] Catalysed forward reaction rate

[216]

k−20 1.7×10
−5 [ms−1] Uncatalysed backward reaction rate

[216]

k−1 5×10
−5 [ms−1] Backward reaction rate [216]

k3 4.4 [(mM ms)−1] Forward reaction rate [216]

k−3 5.6×10
−2 [ms−1] Backward reaction rate [216]

k4 1.45 [ms−1] Fusion rate [216]

τrec 30 [ms (fmol)−1] Vesicle fusion factor (Empirical, ad-
apted from [216])
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Table 3.7: Initial values for the various ion concentrations in the model. These values
correspond to ‘baseline’ conditions, and are used to estimate unknown parameters. Units
are presented in the same manner as they are implemented in the Python code

Constant Value Description

V0

i -65.5 [mV] Neuronal membrane potential at rest.

V0
g -80 [mV] Astrocyte membrane potential at rest.

[Na+]0n 13 [mM] Taken from [191].
[K+]0n 145 [mM] Taken from [43].

[Cl−]0n 7 [mM] Taken from [43].

[Ca2+]0n 1× 10
−4 [mM] Rounded off from 73 nM [253].

[Glu ]0n 2.2385 [mM] Free glutamate in the cytoplasm is about 2
mM [254]. See section Estimating paramet-

ers.

[Na+]0a 13 [mM] Obtained from experimental traces in [191].

[K+]0a 80 [mM] Obtained by setting K+reversal potential to
∼-85 mV (here it is -87.7 mV).

[Cl−]0a 35 [mM] Obtained from Bergmann glia data in [255].

[Ca2+]0a 1× 10
−4 [mM] Chosen to be the same as in the presynaptic

terminal (Empirical).

[Glu ]0a 2 [mM] Chosen to be the same as in the presynaptic
terminal (Empirical).
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Table 3.8: Initial values for gating variables, glutamate states and volumes. These values
correspond to ‘baseline’ conditions, and are used to estimate unknown parameters. Units
are presented in the same manner as they are implemented in the Python code

Constant Value Description

m0 1.33135×10
−2 Na+activation gating variable. Estimated by

setting right-hand side of the third equation
of Eq. (3.1) to zero at resting conditions.

h0 0.987298 Na+inactivation gating variable. Estimated
by setting right-hand side of the third equa-
tion of Eq. (3.1) to zero at resting conditions.

n0 2.96946×10
−3 K+activation gating variable. Estimated by

setting right-hand side of the third equation
of Eq. (3.1) to zero at resting conditions.

N0

I 2.238× 10
−3 [fmol] Baseline molar amount of free glutamate in

the presynaptic terminal. Obtained from the
relation N0

I = [Glu ]0n × WPreSyn.

N0

D 4.04605 × 10
−7

[fmol]
Baseline molar amount of vesicular glutam-
ate in the depot of the presynaptic terminal.
See section Estimating parameters.

N0

N 3.36567 × 10
−4

[fmol]
Baseline molar amount of non releasable
vesicular glutamate in the presynaptic ter-
minal. See section Estimating parameters.

N0

R 4.14849 × 10
−4

[fmol]
Baseline molar amount of readily releasable
vesicular glutamate (not yet binded to Ca2+)
in the presynaptic terminal. See section
Estimating parameters.

N0

R1
9.778061 × 10

−6

[fmol]
Baseline molar amount of readily releasable
vesicular glutamate (binded to one Ca2+ion)
in the presynaptic terminal. See section
Estimating parameters.

N0

R2
7.655809 × 10

−8

[fmol]
Baseline molar amount of readily releas-
able vesicular glutamate (binded to two
Ca2+ions) in the presynaptic terminal.

N0

R3
2.08192593 × 10

−11

[fmol]
Baseline molar amount of readily releasable
vesicular glutamate (not yet binded to three
Ca2+) in the presynaptic terminal.

W0
n 2 [1000µm3] Baseline neuronal soma volume (taken from

[43])

W0
a 2 [1000µm3] Baseline astrocyte soma volume (Empirical,

chosen to be the same as W0
n )
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Table 3.9: Parameters estimated from baseline conditions. Units are presented in the
same manner as they are implemented in the Python code. See section ‘Estimating
parameters’ for derivation.

Constant Value Description

PNa+ ,n
L 1.706 × 10

−6

[1000µm3(ms)−1]
Neuronal Na+ leak channel permeability.

PK+ ,n
L 1.771 × 10

−5

[1000µm3(ms)−1]
Neuronal K+ leak channel permeability.

PCl− ,n
L 2.494 × 10

−6

[1000µm3(ms)−1]
Neuronal Cl− leak channel permeability.

PCa2+ ,n
L 1.649 × 10

−11

[1000µm3(ms)−1]
Neuronal Ca2+ leak channel permeability.

PGlu ,n
L 3.662 × 10

−6

[1000µm3(ms)−1]
Neuronal Glu leak channel permeability.

PNa+ ,a
L 1.054 × 10

−7

[1000µm3(ms)−1]
Astrocytic Na+ leak channel permeability.

PK+ ,a
L 7.877 × 10

−5

[1000µm3(ms)−1]
Astrocytic K+ leak channel permeability.

PCl− ,a
L 4.388 × 10

−7

[1000µm3(ms)−1]
Astrocytic Cl− leak channel permeability.

PCa2+ ,a
L 3.022 × 10

−10

[1000µm3(ms)−1]
Astrocytic Ca2+ leak channel permeability.

PGlu ,a
L 2.891 × 10

−5

[1000µm3(ms)−1]
Astrocytic Glu leak channel permeability.

Volumes and amounts of ions (obtained after setting αe = 20%)

W0
e 0.925 [1000µm3] Baseline extracellular volume.

Nn
A− 302.0105 [fmol] Amount of impermeant anions in the neur-

onal soma.

Ne
B+ 2.790 [fmol] Amount of impermeant cations in the extra-

cellular space.

Ne
A− 21.264 [fmol] Amount of impermeant anions in the extra-

cellular space.

Na
B+ 110.497 [fmol] Amount of impermeant cations in the astro-

cyte soma.

Na
A− 209.111 [fmol] Amount of impermeant anions in the astro-

cyte soma.

CNa+ 188.7 [fmol] Total amount of Na+ions in the system.

CK+ 428.775 [fmol] Total amount of K+ions in the system.

CCl− 198.375 [fmol] Total amount of Cl−ions in the system.

CCa2+ 1.8 ×10
−3 [fmol] Total amount of Ca2+ions in the system.

CGlu 5 ×10
−3 [fmol] Total amount of Glu ions in the system.

Wtot 2.925 [1000µm3] Total volume of the system.
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A neural mass model for EEG in
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Abstract

Normal brain function depends on continuous cerebral blood flow for the supply
of oxygen and glucose, and is quickly compromised in conditions where the
metabolic demand cannot be met. Insufficient cerebral perfusion can result
in ischemic stroke, with symptoms ranging from loss of motor or language
function to coma, depending on the brain areas affected. Cerebral ischemia
also results in changes in the electroencephalogram. Initially, a reduction of
the frequency of the rhythms occurs. Depending on the depth and duration
of energy deprivation, this eventually leads to the disappearance of all rhythmic
activity. In this chapter, we study the relationship between electroencephalogram
(EEG phenomenology and cellular biophysical principles using a model of
interacting thalamic and cortical neural masses coupled with energy-dependent
synaptic transmission. Our model faithfully reproduces the characteristic EEG
phenomenology during acute cerebral ischemia and shows that synaptic arrest
occurs before cell swelling and irreversible neuronal depolarisation. The early
synaptic arrest is attributed to ion homeostatic failure due to dysfunctional
Na+/K+-ATPase. Moreover, we also show that the excitatory input from
relay cells to the cortex controls rhythmic behavior. In particular, low relay-
interneuron interaction manifests in burst-like EEG behavior immediately prior
to synaptic arrest. The model thus reconciles the implications of stroke on a
cellular, synaptic and circuit level and provides a basis for exploring multi-scale
therapeutic interventions.
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4.1 Introduction

Stroke is one of the leading causes of death in the world today [256], with
approximately 11% of global deaths, as per the World Health Organisation.
ischemic stroke, in particular, accounts for 87% of all stroke cases and is caused
by a blockage in blood supply to the brain. This blockage results in a lack of
oxygen and glucose, compromising various energy-dependent processes, such
as synaptic transmission and maintenance of membrane potentials [5]. In the
core region of the affected area, cerebral blood flow (CBF) is less than ≈ 10
ml/100g/min, which leads to irreversible loss of function occurring within
minutes. In the surrounding area, known as the penumbra, CBF is in the
range of 10-40 ml/100g/min, and significant neuronal dysfunction exists with
potential for recovery, depending on the depth and duration of the remaining
perfusion [41]. In the penumbra, synaptic transmission failure is the main cause
of loss of function.
Oxygen and glucose are essential for the synthesis of adenosine triphosphate
(ATP) by the mitochondria, where the main consumer is the Na+/K+-ATPase
(NKA). The NKA maintains ion homeostasis at the synapse by exchanging 3
Na+ ions for 2 K+ ions per ATP molecule consumed against their respective
concentration gradients. At the synaptic level, the vesicular-ATPase (vATPase)
consumes ATP to maintain the pH level of neurotransmitter-carrying vesicles.
The proton gradient is vital to the efficient packing (endocytosis) and release
(exocytosis) of these vesicles. Synaptic recycling is interrupted during mild
ischemia in the form of limited endocytosis or exocytosis [257]. If energy
is restored sufficiently fast, synaptic function recovers completely. However,
persistent transmission failure is possible after prolonged ischemia [258]. We
note that synaptic transmission failure can occur without changes in membrane
potentials or baseline ion concentrations [41].
If the ATP depletion is more severe, resting membrane potentials will also
change, as the NKA cannot compensate for the non-zero transmembrane ion
currents. The resulting depolarization, in turn, causes further large fluxes of
the ions Na+, K+ and Cl− across the membrane along their concentration
gradients, and a net intracellular increase in Na+ and Cl− occurs [43]. The
increase in intracellular osmolarity will subsequently induce cytotoxic edema
[259]. Changes in neuronal function resulting from ischemic stroke, in
particular, are also reflected in the electroencephalogram if the cortex is involved
(EEG) [14, 64, 137]. In the clinic, EEG monitoring is used in patients at risk for
cerebral ischemia, for instance, during carotid endarterectomy [64, 260, 65] or
to assess recovery in patients with a postanoxic encephalopathy after cardiac
arrest [71, 261]. The EEG changes in acute ischemia are well characterized and
depend on the depth and duration of the ischemia. Initially, higher frequencies
are suppressed, subsequently followed by the emergence of slower rhythms in
the delta range, and finally, all rhythms may disappear [262, 64]. However, the
precise biological mechanisms that result in such changes in the EEG are not
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well known.

In this chapter, we employ a biophysical approach to reconcile principles of
EEG and cellular synaptic function. We propose a mathematical model of
coupled neural masses, where the coupling is based on population-averaged
synaptic behavior. Population-averaged ion dynamics of the neural masses
result in a firing-rate function dependent on membrane and Nernst potentials.
Subsequently, this firing rate is used to compute synaptic currents from one
neural mass to another. Each neural mass is surrounded by a finite extracellular
bath containing oxygen, and energy deprivation is modelled by transiently
depriving the bath of oxygen. We use the model to explain the link between
cellular synaptic inhibition and evolution of the EEG rhythms and explore the
differential sensitivity of NKA and vATPase function to energy availability.

Neural mass models are widely used to describe population synaptic dynamics
based on a population-averaged firing rate [119, 133, 111, 130]. Such models have
been successfully applied to explain several neuropathologies such as epilepsy
[263, 127, 112] neurodegenerative diseases [264, 265]. The Liley model [133] in
particular is conductance-based and thus more biophysically interpretable. The
model has been extended to produce EEG rhythms associated with postanoxic
encephalopathy [137]. Spiking neuron models have also been used to model
the effects of stroke on thalamocortical circuits [266]. On a cellular level, ion
homeostasis in neurons, astrocytes and the tripartite synapse are modelled using
biophysical principles, as done in Chapter 3 and [43, 22, 267]. In some of these
works inhibition of Na+/K+-ATPase (NKA) is used to model consequences of
energy deprivation [43, 268].

To our knowledge, there are no computational models that reconcile single-
ion and neural mass approaches. Following work on single-ion dynamics in
Chapter 3 and [43], we present for the first time a biophysical model of a neural
mass that depends on ion dynamics of Na+, K+ and Cl−. We obtain dynamics of
ion concentrations, membrane potentials, cellular volumes and synaptic currents
in one formalism. This approach allows us to extend the idea of bistability
observed in our previous work to the synaptic context. In particular, we show
corroboration with experimental literature by modelling mild ischemia by slow
(de)activation of synapses. Moreover, we show that inhibiting the NKA and
vATPase results in several phases of synaptic rhythms - from healthy to complete
synaptic arrest and cellular depolarization.

We also explore the implication of stroke on neural circuitry in the context of
functional reorganisation. In particular, we show that excitatory thalamic relay
cells govern normal EEG behavior. For low relay-interneuron interaction, we
show that the interface between rhythms and synaptic arrest is characterized by
different types of mixed-mode oscillations [131], which are burst-like behaviors
that arise from slow changes in cellular function.
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4.2 Model description

The model scheme used in this chapter is shown in Fig. 4.1-A. We model two
neural regions, cortex and thalamus. The thalamus is used to provide excitatory
drive to the cortex and is not subjected to energy deprivation for all simulations
shown in this chapter. For each neural region, we model two local populations,
inhibitory and excitatory, that interact via synaptic connections. In the cortex,
we model excitatory pyramidal neurons (P) and inhibitory interneurons (I).
Similarly, we include excitatory reticular (R) and inhibitory relay (S) neurons
for the thalamus. The model for each population is composed of two parts,
averaged ion dynamics and the synaptic component. All four local populations
are modelled as point neuronal compartments with averaged ion dynamics and
embedded in a shared, finite extracellular space. Within these compartments,
dynamics of Na+, K+ and Cl− are modelled via the activity of ion channels and
cotransporters. Passive osmotic diffusion enables the compartments to swell or
shrink via the movement of water. Each population’s ion dynamics produces
a net population firing rate, which activates the AMPA (excitatory) or GABA
(inhibitory) channels of other populations, leading to a cascade of excitation and
inhibition in the system, see Fig. 4.1-B.

The single-neuron model from Dijkstra et al. [43] is used to model the averaged
ion dynamics of every population. Additionally, the architecture of the neural
mass network is chosen from [269]. The EEG signal is then assumed to emerge
from the net synaptic current of the pyramidal population.

In the sections ahead, we explain the equations used to describe ion dynamics in
a single neural region. The model contains two such neural regions - cortex and
thalamus - for which the equations are identical except for parameter values.

4.2.1 Ion dynamics

For each neural region, ion homeostasis in the two populations is modelled
based on the averaged behavior of single neuron ion dynamics. As a result the
fast dynamics corresponding to action potential generation are averaged out,
leaving slower dynamics such as ion homeostasis and EEG rhythms intact.

In particular, we describe the dynamics of the molar amounts NX
Y of ions Y ∈

{Na+, K+, Cl−} in populations X ∈ {P, I, S, R}. The dynamics of population
volumes WX are described by the osmotic imbalance generated by concentrations
[X]Y with respect to the extracellular space. As the total volume and number
of ions are kept constant for each neural region, the extracellular volumes and
concentrations are given by conservation laws. We fix constants CY and Wtot that
refer to the total number of ions of type Y and total regional volume, respectively.
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Figure 4.1: A model of interacting neural populations with biophysical dynamics. (A)
The model consists of two neural regions: cortex and thalamus, each composed of two
populations. Thus we model four populations, inhibitory interneurons (I), excitatory
pyramidal neurons (P), thalamic relay neurons (S) and thalamic reticular neurons (R).
The averaged ion dynamics of Na+, K+and Cl− for each population are modelled
with an averaged single-neuron formalism, where equations are chosen from [43]. Two
populations from the same region are enclosed in a finite extracellular space, with an
external bath of O2. (B) The averaged ion dynamics produce population synaptic currents
via a firing rate function which depends on incoming currents and Nernst potentials. (C)
The populations are connected via synaptic currents; the network architecture is taken
from [269]. Each mark in the table describes an excitatory (plus) or inhibitory (minus)
connection from column population to row population.
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Thus, the extracellular components are given by,

We = Wtot − ∑
X

WX ,

[Y]e = (CY − ∑
X

NX
Y )/We. (4.1)

The dynamics of the intracellular components of a population X are given by
the following differential equations,
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H2ORT ∑
Y

([Y]X − [Y]e),

(4.2)

where F, R and T are Faraday’s constant, the gas constant and fixed temperature,
respectively. The subscript e indicates an extracellular quantity. LX

H2O is the
average water permeability of the intracellular compartments of population X.
The various currents IY,X

Z correspond to averaged ion currents of ion Y generated
by ion channels and cotransporters Z in population X. Now, we briefly describe
each ion current IY,X

Z . The synaptic currents IY,X
syn are explained later.

Voltage-gated and leak channels

The voltage-gated channels IY,X
G and leak channels IY,X

L are formulated in the
form of Goldman-Hodgkin-Katz (GHK) currents, as done in Chapter 3. The
currents are given by,

INa+ ,X
G = PNa+

G m3
∞h∞GHK(VX , [Na+]X , [Na+]e),

IK+ ,X
G = PK+

G n4
∞GHK(VX , [K+]X , [K+]e), (4.3)

where m, h and n are gating variables, PY
G are ion channel permeabilities and

VX is the averaged membrane potential of population X. The expression for VX

follows from [43],

VX =
F

C

(

NX
Na+ + NX

K+ − NX
Cl− − NX

A−

)

,

where C is the averaged membrane capacitance of population X and A− are
large impermeant anions in the intracellular space of the population. The
function GHK(VX , [Y]X , [Y]e) is given by,

GHK(VX , [Y]X , [Y]e) =
F2VX

z2XRT

[Y]X − [Y]e exp
(

− FVX
zXRT

)

1− exp
(

− FVX
zXRT

) , (4.4)



4.2. Model description 85

where zX is the valence of ion species X. The terms m∞, h∞ and n∞ are given by,

m∞ = αm/(αm + βm),

h∞ = αh/(αh + βh),

n∞ = αn/(αn + βn),

where

αm =
0.32(V + 52)

1− exp(−(V + 52)/4)
, βm =

0.28(V + 25)

exp((V + 25)/5)− 1
,

αh = 0.128 exp(−(V + 53)/18), βh =
4

1+ exp(−(V + 30)/5)
,

αn =
0.016(V + 35)

1− exp(−(V + 35)/5)
, βn = 0.25 exp (−(V + 50)/40) , (4.5)

where the subscript was dropped from V for convenience. The expression for
the voltage-gated Cl− channel follows from [43] and is given by,

ICl− ,X
G = PCl−

G

(

1+ exp
(

−VX + 10

10

))−1

GHK(VX , [Cl−]X , [Cl−]e), (4.6)

and the leak currents are given by,

INa+ ,X
L = PNa+

L GHK(VX , [Na+]X , [Na+]e),

IK+ ,X
L = PK+

L GHK(VX , [K+]X , [K+]e),

ICl− ,X
L = PCl−

L GHK(VX , [Cl−]X , [Cl−]e), (4.7)

with PL the leak channel permeabilities.

KCl cotransporter

We model the flux as the difference of the K+ and Cl− Nernst potentials as in
[102],

JX
KCl = PKCl

RT
F

ln
(

[K+]e[Cl−]e
[K+]X [Cl−]X

)

. (4.8)

where PKCl is the strength of the cotransporter. The corresponding K+ and Cl−

currents are given by

IK+ ,X
KCl = FJX

KCl,

ICl− ,X
KCl = FJX

KCl. (4.9)
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Na+/K+-ATPase (NKA)

The Na+/K+-ATPase is modeled as a function of intracellular Na+, extracellular
K+, extracellular Na+ and extracellular O2. The current follows the model from
[270] and is given by

IX
NKA = PNKA

(

1

1+ exp
(

γ([O2]
NKA
th − [O2]e)

)

)

×
(

gNKA
[Na+]1.5

X

[Na+]1.5
X + (αNKA)1.5

· [K+]e
[K+]e + βNKA

)

, (4.10)

where [O2]
NKA
th is the oxygen threshold for healthy activity. The functions gNKA

and σ are given by

gNKA = 1+ 0.1245 · exp
(

−0.1
FVX

RT

)

+ 0.0365 · σ · exp
(

− FVX

RT

)

, (4.11)

and

σ =
1

7
·
(

exp
(

[Na+]e
67.3

)

− 1

)

, (4.12)

where PNKA is the NKA permeability or the pump strength. The corresponding
Na+ and K+ currents are given by

INa+ ,X
NKA = 3IX

NKA,

IK+ ,X
NKA = −2IX

NKA. (4.13)

4.2.2 Synaptic dynamics

Next, for the two local populations we add synaptic currents, which describe
the connections to each other and themselves, as shown in Fig. 4.1. Later
on, we extend this to two regions. Synaptic currents depend on a firing rate
function, which describes the firing frequency of the population as a function of
membrane voltage and magnitude of external current. Usually, this is modelled
as a sigmoidal function that depends on a membrane potential threshold. This
chapter proposes a more realistic firing rate function that depends on incoming
synaptic currents and Nernst potentials of Na+ and K+.

Biophysical firing rate function

The firing rate function is computed using numerical continuation data of a
Hodgkin-Huxley model, which does not have the pump currents, the KCl
cotransporter currents and the synaptic currents. From our biophysical setup,
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the dynamics of the average population membrane potential V (subscript
dropped for convenience) is given by,

V̇ =
F

C ∑
Y

zY ṄY

= − 1

C ∑
Z,Y

IY
Z

= − 1

C

(

INa+
G + IK+

G + ICl−
G + IL − INKA + Isyn

)

, (4.14)

where IL is the averaged leak current and Isyn is the total synaptic current

Isyn = −INa+
syn − ICl−

syn . (4.15)

The Hodgkin-Huxley model is given by

V̇ = − 1

C

(

(INa+
G + IK+

G + ICl−
G + IL + IExt

)

, (4.16)

where IExt is external input current. Comparing equations (4.14)-(4.16), we see
that setting IExt = −INKA + Isyn in Eq. (4.16) gives our system Eq. (4.14). This
property is exploited to compute a firing rate function that not only depends on
external current, but also on the Nernst potentials of Na+ and K+. This is done
in the following way:

Perform continuation of the stable periodic orbit in the Hodgkin-Huxley
model with respect to three parameters: EK+ , ENa+ and IExt. The existence
of the periodic orbit is in a compact domain, marked by two bifurcations
on the boundary: a saddle-node of periodic orbits to the right, and a
supercritical Hopf to the left, see Fig. 4.2 (left).

Next, approximate a smooth function FR that describes the frequency
of the computed periodic orbits in the previous step, as a function of
EK+ , ENa+ and IExt.

Now, we set the input I to the firing rate function as IExt + Isyn − INKA
instead, where IExt is the external current supplied to the population.

The firing rate function FR is thus expressed as

FR ≡ FR(ENa+ , EK+ , I) = κ

√

I − Ĩ1H(I − Ĩ2), (4.17)

where I refers to external input current, H is the standard Heaviside function
and Ĩ1,2 are Nernst potential-dependent thresholds. The functions κ and Ĩ1,2 are
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given by fitted cubic polynomial expansions as follows,

κ =
3

∑
i,j=1

qij(EK+)i(ENa+)
j,

Ĩ1 =
3

∑
i,j=1

pij(EK+)i(ENa+)
j,

Ĩ2 =
3

∑
i,j=1

rij(EK+)i(ENa+)
j,

where the fitting constants qij, pij and rij are given in Table 4.5.

Synaptic currents and mild ischemia

From the firing rate function FR, we compute the synaptic currents Ii
syn for

a population i. First, we define the synaptic current I
j→i
syn as the current from

population j to i. The net synaptic current for a population i is then given by,

Ii
syn = ∑

j

I
j→i
syn . (4.18)

The current I
j→i
syn depends on the synaptic gating variable rj and maximal current

of population i. The current is modelled as a voltage-gated channel as follows,

I
j→i
syn =







rjg
j→i
syn (Vi − Ei

Na+) (Excitatory AMPA)

rjg
j→i
syn (Vi − Ei

Cl−) (Inhibitory GABA),
(4.19)

where g
j→i
syn are connectivity constants. They are conductances that serve as

network connection parameters. The dynamics of the synaptic variable rj is
given by a typical gating equation and depends on the firing rate FRj of
population j,

ṙj = αj(1− rj)− β jrj, (4.20)

where

αj = αmax
j

FRj

FRj + FRth
j

. (4.21)

The threshold FRth
j depends on the properties of the synaptic behavior of

population j. For inhibitory populations, this threshold is kept higher than for
excitatory populations. The currents INa+ ,i

syn and ICl− ,i
syn are then given by,

INa+ ,i
syn = ∑

j

rj(Vi − Ei
Na+),

ICl− ,i
syn = ∑

k

rk(Vi − Ei
Cl−),
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where j and k span over excitatory (E,S) and inhibitory (I,R) populations,
respectively. The proxy for EEG is computed as the pyramidal synaptic current
IE
syn that is run through a band-pass filter, filtering the signal to only show

rhythms in the 0.1-40 Hz range.

4.2.3 Oxygen dynamics and simulating energy deprivation

We explicitly model oxygen dynamics as a way of performing transient energy
deprivation. First, an infinitely large bath of oxygen is supplied to each neural
region. This bath contains a constant concentration of oxygen [O2]bath = 2 mM.
The diffusion of oxygen in the extracellular space happens via linear diffusion,
where the baseline values is set at [O2]e = 1.75 mM, as per [89]. The influx of
oxygen in the extracellular space is balanced by the consumption of NKA. The
dynamics of [O2]e are thus given by [89],

d

dt
[O2]e = −αλ

F ∑
j

I
j
NKA
Wj

+ ǫO2 ([O2]bath − [O2]e) , (4.22)

where j runs over all populations from a single neural region. The constants
α and λ are O2 consumption rates from [89] and the constant ǫO2 is the O2
diffusion constant. ischemia is simulated by transiently reducing the constant
[O2]bath to lower values before bringing it back to baseline, as done in [89]. For
each population, we obtain four equations describing ion dynamics, given by
Eq. (4.2) and the dynamics of its synaptic variable r, given by Eq. (4.20). Next,
for each neural region, we obtain two equations for extracellular O2 dynamics,
given by Eq. (4.22). In this chapter, we model four populations of two neural
regions, so in total, we have 22 differential equations for our working model.

4.2.4 Parameters and simulation

All the parameters used in the model equations are shown in Tables 4.1-5. Most
of the parameters are chosen directly from previously published work, except
the ones shown in tables 4.4 and 4.1. The parameters shown in Table 4.1 are
estimated from baseline conditions by fixing state variables to their baseline
values and setting the right-hand side of system equations to zero. The synaptic
parameters, shown in Table 4.4, are empirically estimated such that α rhythms
are produced following 20 pA external input current.
The parameters gi→j are determined using the neural mass network architecture
from [271, 269]. These parameters have to be adjusted from the original sources
where they are fluxes (in units volt second) as in this chapter, they represent
ion channel conductances (in units siemen). The parameters αi and βi are
fixed in accordance with three assumptions. First, the deactivation constant
βi for inhibitory populations is kept at least a factor 10 lower than others to
accommodate for the slowly deactivating GABAB receptor [272]. Second, the
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parameters gj→i for inhibitory populations j are kept a factor 10 higher than the
rest, as resting Cl− reversal potential is close to the resting membrane potential
resulting in a small net GABA current. Finally, the parameters αi and βi are set
to be a factor 10 lower than their cortical counterparts to ensure slow-wave input
from the thalamus to cortex.
All simulations ahead are performed in Julia, and is available online at:
https://github.com/mkalia94/BioNeuralMass. For continuation methods, we
use Matcont [80].

Baseline behavior

We use the biophysical neural mass formulation to predict EEG behavior during
mild ischemia and the effect of network heterogeneity on rhythmic behavior. The
model is simulated by supplying the relay cell with an external input current of
20 pA. This stimulus excites the system and generates a robust α rhythm, which
we define as baseline activity. This is shown in Fig. 4.2 (middle, top).
The choice of the input current is made by choosing a value that fits with the
baseline α rhythm. In Fig. 4.2 (right), we plot resulting EEG frequencies against
input current IExt, which shows a steady increase of frequencies after a threshold
(≈ 10 pA). We make the choice corresponding to an EEG frequency of ≈ 13 Hz.

4.3 Results

We use the biophysical neural mass formulation to predict EEG behavior during
mild ischemia and the effect of network heterogeneity on rhythmic behavior. The
model is simulated by supplying the relay cell with an external input current of
20 pA. This stimulus excites the system and generates a robust α rhythm, which
we define as baseline activity. Baseline behavior is subjected to mild ischemia
by transiently reducing Na+/K+-ATPase activity, which we perform explicitly
via our oxygen model. Further, network heterogeneity is explored by varying
parameters g

j→i
syn .

4.3.1 δ rhythms emerge from slow (de)activation of synapses

Physiological EEG rhythms in the cortex are characterized by a dominant
frequency in the α range (8-13 Hz). As a consequence of acute ischemia, these
faster rhythms lose power, and slower (δ) rhythms emerge [64]. We demonstrate
this behavior in Fig. 4.2. Here, the relay (excitatory thalamic) population is
subjected to 20 pA of current, which provides an excitatory drive to the cortical
populations. The synaptic currents of all populations then show synchronous
rhythmic activity in the α range (≈12 Hz). In Fig. 4.2 (middle, top), we plot
the resulting synaptic current from the pyramidal cell (cortex, excitatory), which
is used as a proxy for measuring EEG activity. Throughout this simulation,

http://www.github.com/mkalia94/BioNeuralMass
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the membrane potentials and ion concentrations do not deviate from baseline
conditions.

Figure 4.2: Firing rate and signalling dynamics at baseline. (Left) Plot of the biophysical
firing rate function Eq. (4.17) against input current I for fixed ENa+ and EK+ . The firing
rate is characterized by two thresholds of zero firing rate. The first corresponds to
subthreshold behavior, and the latter signifies the depolarisation block, where averaged
population membrane potentials saturate at pathological levels. (Middle) Plots of the
net pyramidal synaptic current IP

syn against time under two different conditions. The
top trace corresponds to baseline parameters, which give rise to α oscillations (≈12 Hz).
In the bottom trace, the synaptic constants αmax

j and β j are reduced to 10% of baseline
values which gives rise to δ oscillations (≈ 2 Hz). Note the increased amplitude of the
δ oscillations. (Right) Frequency vs input current to the thalamic relay neurons IExt.
Increasing input current past a threshold (≈ 10 pA) substantially increases frequency.
For the rest of the simulations, baseline input is set to 20 pA.

Next, we perform the same simulation but with mild ischemia. For this
setting, we slow the synaptic activation and deactivation constants of the cortical
populations, setting them to 10% of their baseline values. As before, we also
subject the excitatory thalamic population to 20 pA constant current. The
resulting simulation shows rhythmic behavior too, but much slower, i.e., in the
δ range, see Fig. 4.2 (middle, bottom).
In our simulations, slowing the synaptic activation and deactivation constants of
the cortex results in a α to δ transition, typical of mild ischemia. Based on this
observation, we model the effect of the vesicular ATPase on synaptic dynamics,
by changing Eq. (4.20) to

ṙj = fvATP(αj(1− rj)− β jrj), (4.23)

where fvATP depends on extracellular O2 and models the effect of the vesicular
ATPase on the activation and deactivation of the synaptic variable. In the
absence of O2, it simulates mild ischemia by slowing down gating behavior.
The term fvATP is modelled as a sigmoid as follows,

fvATP = [O2]min + (1− [O2]min)
(

1+ exp(γ([O2]
vATP
th − [O2]e))

)

. (4.24)

The constant [O2]min prevents synapses from completely slowing, and is set
to 0.1, or 10% of baseline values. We assume that the vATPase consumes
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extracellular O2 in the same way as the NKA. Thus, Eq. (4.22) becomes,

d

dt
[O2]e = −αλ

F ∑
j

(

I
j
NKA + I

j
vATP

Wj

)

+ ǫO2 ([O2]bath − [O2]e) , (4.25)

where IvATP is the vATPase current associated with oxygen consumption, and is
given by,

I
j
vATP = gvATP fvATP, (4.26)

where the maximum current gvATP converts the flux to a current and is
computed from resting baseline conditions.

4.3.2 Mild ischemia leads to synaptic arrest via multiple phases

Next, we consider our extended model with the vATPase. We simulate energy
deprivation in this case by transiently reducing [O2]bath. We show the result of
such simulations in Fig. 4.3.
The extracellular oxygen concentration, [O2]bath, is reduced transiently to 80%
of its baseline value between minutes 0.5 and 10. Meanwhile, 20 pA excitatory
thalamic stimulation is provided for the full length of the simulation, as before.
In Fig 4.3-top,right we plot the bath oxygen concentration [O2]e, which shows a
characteristic transient profile of rapid initial decrease followed by slow recovery,
as seen in previous work [89, 273].
Although the threshold [O2]

NKA
th is available in literature [89], the choice for

the vATPase threshold [O2]
vATP
th is not clear. Given the high ATP demand

of the NKA compared to endo/exocytosis [41] we assume that [O2]
vATP
th >

[O2]
NKA
th . Thus we perform a parameter sweep by varying the two thresholds for

various values between [1.1, 1.6]. For each parameter pair, we simulate energy
deprivation as before while simultaneously providing excitatory thalamic input
throughout the simulation. This setup allows us to observe transitions between
several rhythmic patterns. The results of the parameter sweep are shown in
Fig. 4.3-top, left. We observe three distinct behaviors of the EEG signal, and
we plot an example for each case. Alongside the EEG, we plot a time-frequency
plot of the signal, computed via a moving window for every time point. The first
(square) corresponds to a recovery of the α rhythm after oxygen restoration. In
this case, the EEG may slow down to the δ range during low-oxygen conditions.
The presence of low-frequency rhythms is also accompanied by a significant
increase in EEG amplitude. Recovery occurs for relatively low NKA thresholds.
Upon increasing [O2]

NKA
th slightly, the EEG no longer recovers to the α range

post oxygen restoration and remains flat (triangle and cross). In this scenario,
two subcases are possible. First (triangle), the EEG stays flat after energy
restoration, but membrane potentials and ion dynamics recover to baseline. The
second (cross) case corresponds to a total loss of synaptic communication and
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Figure 4.3: Two-parameter sweep of the model with oxygen dynamics. (Top, left) Two
parameter plot of [O2]

NKA
th vs [O2]

vATP
th for several values between 1.1 and 1.6 mM. For

each parameter pair, the oxygen bath supply [O2]bath is reduced to 80% of its original
capacity between minutes 0.5 and 10 while simultaneously stimulating the thalamic relay
neuronal population with 20 pA for the whole duration of the simulation. This results
in the extracellular oxygen trace (Top, right). For each parameter pair, we show the
three possible cases (square, triangle, cross) corresponding to the transitional behavior
of the EEG. The cases are ordered in pathological effect, and for each case, we plot the
corresponding EEG signal behavior (Bottom, left solid black line). The green panel also
shows that the α-δ transition is accompanied by increased amplitude during slow-wave
activity. Alongside each EEG plot, we also show its frequency-time plot (Bottom, right),
which shows the dominant frequency characteristics of the transitional behavior, and the
corresponding averaged cortical membrane potentials. The red and blue trace correspond
to interneurons and pyramidal cells respectively.
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ion homeostasis - the EEG stays flat post energy restoration and the averaged
neuronal membranes are permanently depolarised.
Moreover, varying [O2]

vATP
th while keeping [O2]

NKA
th fixed does not change the

qualitative behavior of the EEG signal. Thus it suffices to keep these parameters
identical.
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Figure 4.4: The impact of relay neurons on cortical rhythms. (Left, top) Plot of a
two-parameter sweep with parameters gS→P

syn and gS→I
syn , corresponding to relay input

to pyramidal neuronal and interneuronal populations, respectively. For each parameter
value, the frequency of the corresponding signal IP

syn is shown. For a few cases, the
corresponding IP

syn is shown in pA (black trace). (Right) The two insets explore transitions
involving mixed-mode oscillations (MMOs) (green and pink). In the green box, the period
of IP

syn is plotted (black dots) against parameter gS→I
syn while gS→P

syn = 0.225, showing
a period-adding sequence. The number on the black dots correspond to the number
of subthreshold small amplitude oscillations (SAO). The onset of MMOs coincides with
subcritical Hopf bifurcations nearby (black square), which transition to supercritical Hopf
bifurcations (black inverted triangle) as gS→I

syn is increased. Similar plots are shown in
the pink box, where gS→P

syn = 0.475. Here the numbers correspond to the number of
suprathreshold SAOs. (Left, bottom) Two simulations of regular rhythms are shown for
baseline conditions (red) and the near-Hopf case (blue).

4.3.3 Relay cells control cortical rhythmic behavior

The global onset of cortical stroke may also have consequences on the thalamo-
cortical circuit itself [77, 274, 275]. Our model contains four thalamocortical
connections. These amount to the following parameters being nonzero: gP→S

syn ,
gP→R

syn , gS→P
syn and gS→I

syn . We now vary these parameters to see the effect of sever-
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ing thalamocortical contact on baseline signalling. First, we are able to immedi-
ately neglect two parameters: gP→S

syn and gP→R
syn . These correspond to the excit-

atory input provided by cortical pyramidal cells to both thalamic populations.
The parameter gP→S

syn modulates the frequency of baseline behavior but does not
drastically affect the signalling process. Further, setting the parameter gP→R

syn to
zero results in no change in qualitative behavior. Thus, we are left with two
parameters gS→P

syn and gS→I
syn , which control the excitatory thalamic input to the

cortical populations. We perform a parameter sweep of these parameters in
the two-parameter domain, see Fig. 4.4. Baseline α rhythms correspond to the
parameter pair (0.5, 0.2).

For each parameter, the resulting frequency of the total pyramidal synaptic
current IP

syn is plotted. For a few cases, corresponding traces of IP
syn are shown.

Several interesting behaviors emerge. We observe that rhythms exist for a small
window of gS→P

syn . While keeping gS→I
syn fixed, we see that there is a small

window where rhythmic behavior exists. Increasing gS→I
syn squeezes this window,

till there are no more rhythms possible. Baseline α rhythms (red point) are
structurally stable in a local neighbourhood and transit to silent behavior via
three thresholds. For relatively low values of the parameter gS→I

syn (less than
50% of baseline), two thresholds correspond to sequences of period-adding
bifurcations (green and pink box). In both cases, the period-adding sequences
are characterized by mixed-mode oscillations (MMOs) [276, 131], see traces in
the green and pink box. For low values of gS→P

syn (green box), the MMOs contain
subthreshold small-amplitude oscillations (SAOs). For each jump in the period,
a new subthreshold SAO is added to the signal. For higher values of gS→P

syn
(pink box), the sequence of MMOs contains suprathreshold SAOs. The last
threshold (blue) corresponds to a supercritical Hopf bifurcation. Here, regular
rhythms disappear while the frequency settles to a fixed high frequency and the
amplitude decays.

The onset of MMOs coincides with nearby subcritical Hopf bifurcations, two
examples of which are shown in the parameter sweep (black squares). Here, the
silent EEG state loses stability without the emergence of stable periodic behavior.
Upon increasing gS→P

syn , the Hopf bifurcations transition into a supercritical
type (black inverted triangles). A small perturbation of the parameter gS→I

syn
at such a point results in the emergence of stable rhythmic behavior, with
low amplitude. The Hopf points were computed via MatCont [80] using
one-parameter continuation. It is natural to expect that these points form a
continuous curve, where the transition from the supercritical to subcritical case
is characterized by a generalized Hopf bifurcation. Due to the slow-fast and
multi-scale nature of the system, continuation as a Hopf bifurcation curve was
not feasible. However, upon detection of a Hopf point, MatCont also determines
whether the Hopf bifurcation is sub- or super-critical. Our one-parameter
continuations support the existence of codim 2 bifurcation.
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4.4 Discussion

In this chapter, we have introduced a neural mass model to describe the
pathophysiology of mild ischemia in the context of clinical stroke. The model is
derived from biophysical principles and encapsulates the dynamical description
of four populations in the cortex and thalamus.

4.4.1 Sequence of pathologies in low-oxygen conditions

Mild oxygen deprivation results in a smooth transition from α rhythms to the
emergence of δ activity. In acute hemispheric strokes, the amount of asymmetry
in δ-power is associated with the neurological status [64, 260, 14, 69, 277, 266].
The appearance of delta activity in acute ischemia is reversible if cerebral
blood flow is restored sufficiently fast [64], but after 5-7 minutes of insufficient
perfusion, irreversible neuronal damage can occur and EEG changes persist [66].

Synaptic transmission is metabolically demanding. At the presynaptic side, ATP
is used on several types of ATPase, including the sodium/potassium pump,
the Na+/Ca2+ exchanger, the calcium-ATPase and the vesicular H+-ATPase.
Postsynaptically, ATP use is larger and primarily needed for restoring ion fluxes
involved in synaptic currents [187]. The vATPase is an ATP-driven pump that
ensures the necessary proton gradient across the vesicle membrane to allow
efficient neurotransmitter secretion in the synaptic cleft [278]. Severe ischemia
can result in excitotoxicity, characterized by neurotransmitter accumulation in
the cleft and saturation of postsynaptic activity. Mild ischemia mainly affects
vesicular endo- and exocytosis [257, 279], resulting in presynaptic transmission
failure [258, 41].

We capture this phenomenon by modelling the vATPase by a sigmoidal
factor that depends on extracellular oxygen. During low oxygen conditions,
the vATPase slows down synaptic constants αmax

syn and βsyn, thereby slowing
resulting synaptic variables and EEG rhythms, see Figure 4.4. We found that
varying vATPase affinity to available oxygen does not change the sequence
of pathological behaviors associated with oxygen deprivation. Upon further
reducing energy, EEG rhythms can disappear and remain absent even after
energy restoration. Here, ion homeostasis in the population can either stay
normal or settle at pathological behavior, see Figure 4.4. We observe that EEG
silencing accompanied by normal ion homeostasis always precedes the case with
depolarized populations, upon varying available oxygen or varying NKA/vATP
oxygen thresholds. This is attributed to the failure of synaptic rhythmic
generation in the model which precedes failure in ion homeostasis, concurrent
with experimental literature on in vivo and in vitro models [280, 258, 41, 281].
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4.4.2 Thalamic relay neurons control baseline activity

Our model contains four connections between the thalamus and cortex. We
find that altering thalamocortical connections (connections from thalamic relay
cells to interneurons and pyramidal cells) shows burst-like EEG oscillations
at the interface between normal rhythms and silent EEG behavior. Cortical
ischemic stroke not only causes damage to cortical neurons, but may also
result in substantial loss of thalamocortical projection and generally dampens
excitability in thalamocortical circuits [282, 77, 79, 283, 284, 285]. This behavior
is replicated in the model. For low values of gS→P

syn , rhythmic activity is lost, see
Fig. 4.4. Moreover, we hypothesize that rhythmic activity exists for a window
of relay-pyramidal cell connections. The interface is marked either by fast, low-
amplitude oscillations or burst-like behavior.

Mixed-mode oscillations characterize the burst-like behavior for weak relay-
interneuron connectivities. MMOs are widely studied dynamical objects that
arise in many computational neuroscience models [286, 132, 287, 288, 289, 290].
We observe MMOs of subthreshold and suprathreshold type as seen in previous
literature [291], that occur at the border between normal and silent EEG activity.
The suprathreshold MMOs are remarkably similar to generalized periodic
discharge (GPD) behavior in EEGs, which are hypothesized to result from weak
excitatory input to inhibitory interneurons [292, 71], which agrees with our
model predictions, see Fig. 4.4. Moreover, GPDs are also hypothesized to be
prevalent at the interface between normal and low-voltage EEG behavior [292].
These events may also be related to pathological burst suppression patterns,
which are associated with poor neurological outcome following stroke [293, 137].

4.4.3 Model assumptions and limitations

Our model has several limitations. For instance, astrocytes are not included in
the current model, while their role in ion homeostasis is undisputed, as shown in
Chapter 3 and [259]. We also assumed that ischemia may affect thalamocortical
projections, while preserving intrinsic neuronal function in the thalamus. While
this is in agreement with reports on postmortem histopathology in patients
with a postanoxic encephalopathy after cardiac arrest, showing that cortical
neurons can be selectively affected [285], the involvement of the thalamus cannot
be excluded. Several model parameters are empirically optimized to ensure
baseline α activity. However, these choices - including network architecture
- are not unique and their perturbation results in no qualitative change in
the results shown. Despite these limitations, our simulations show similar
EEG characteristics as clinically observed and provide candidate biophysical
pathophysiological mechanisms for its generation.
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4.4.4 Conclusion

In sum, we constructed a neural mass model based on biophysical principles
of ion dynamics, which allows us to make predictions simultaneously about
synaptic behavior and ion homeostasis. Our model makes several predictions
for EEG rhythms following adapted neuronal activity due to mild ischemia or
during post-stroke functional reorganisation. High amplitude δ rhythms emerge
during mild ischemic connections, and bursting behavior via mixed-mode
oscillations may manifest as a result of altering thalamocortical connections.
The detailed behavior of the model makes it generalizable to other pathological
behaviors such as epilepsy, and can be used to investigate network-based and
neuronal pathologies simultaneously.

4.5 Appendix

Table 4.1: Parameters estimated from baseline conditions. Units are presented in the
same manner as they are implemented in the Julia code.

Constant Value Description

PNa+
L 1.28× 10

−6 [1000 µm3(ms)−1] Na+ leak channel permeability.

PK+

L 1.252× 10
−5 [1000 µm3(ms)−1] K+ leak channel permeability.

PCl−
L 2.812× 10

−6 [1000 µm3(ms)−1] Cl− leak channel permeability.

We 16 [1000 µm3] Baseline extracellular volume.

NX
A− 302.0105 [fmol] Amount of impermeant anions in a

population soma.

Ne
A− 416.10 [fmol] Amount of impermeant anions in

the extracellular space.

CNa+ 2484 [fmol] Total amount of Na+ions in a
neural region.

CK+ 628 [fmol] Total amount of K+ions in a neural
region.

CCl− 2192 [fmol] Total amount of Cl−ions in a neural
region.

Wtot 20 [1000 µm3] Total volume of a neural region.
ǫO2 1.1175 × 10−4 [ms−1] Oxygen diffusion constant

gvATP 0.2409 [pA] maximum vATPase current
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Table 4.2: Initial values for the various states in the model in all neural regions and

populations X. These values correspond to ‘baseline’ conditions, and are used to estimate
unknown parameters. Units are presented in the same manner as they are implemented
in the Julia code.

Constant Value Description

[Na+]X 13 [mM] Taken from [11].
[K+]X 145 [mM] Taken from [43].

[Cl−]X 7 [mM] Taken from [43].

WX 2 [1000 µm3] Baseline neuronal soma volume
(taken from [43])

rX 0 Initial synaptic variable
[O2]e 1.25 [mM] Baseline oxygen concentration in

the extracellular space [89]

Table 4.3: Parameters associated with ion dynamics. Units are presented in the same
manner as they are implemented in the Julia code.

Constant Value Description

C 20 pF Membrane capacitance [43]
F 96485.333 [C mol−1] Faraday’s constant

R 8314.4598 [C(mV)(mol K)−1] Universal gas constant

T 310 K Room temperature [43]
PNa+

G 8× 10
−4 [1000 µm3(ms)−1] Voltage-gated Na+ channel per-

meability [43]

PK+

G 4× 10
−4 [1000 µm3(ms)−1] Voltage-gated K+ channel per-

meability [43]

PCl−
G 1.95× 10

−5 [1000 µm3(ms)−1] Voltage-gated Cl− channel per-
meability [43]

αNKA 13 [mM] NKA: Half-saturation concentra-
tion for intracellular Na+, see
Chapter 3

βNKA 0.2 [mM] NKA: Half-saturation concentra-
tion for extracellular K+, see
Chapter 3

PKCl 1.3× 10
−6 [fmol (ms mV)−1] KCl cotransporter strength [43]

LX
H2O 2 × 10

−14 [1000 µm3 mPa−1

ms−1]
Neuronal membrane water per-
meability [43]

α 0.1666 Conversion factor [89]

λ 1 Relative cell density [89]

[O2]bath 1.75 [mM] Baseline bath oxygen concentration
[89]

γ 20 [mM−1] Sigmoidal slope constant

[O2]
Y
th Varies, see Fig. 4.3 [mM] Oxygen threshold for ATPase



100 Chapter 4. A neural mass model for EEG in ischemia

Table 4.4: Parameters associated with synaptic dynamics. Parameters are empirically
adjusted. Units are presented in the same manner as they are implemented in the Julia
code.

Constant Value Description

gS→R 0.3 [nS] Population connectivity
gS→E 0.5 [nS] Population connectivity
gS→I 0.2 [nS] Population connectivity
gR→S 2 [nS] Population connectivity
gE→S 0.5 [nS] Population connectivity
gE→R 0.1 [nS] Population connectivity
gE→E 0.3 [nS] Population connectivity
gE→I 0.5 [nS] Population connectivity
gI→E 5 [nS] Population connectivity
gI→I 2.5 [nS] Population connectivity
FRth

S , FRth
E 0.2 [ms−1] Excitatory firing rate threshold

FRth
R , FRth

I 0.5 [ms−1] Inhibitory firing rate threshold
αE 12.5 [ms−1] Pyramidal synaptic activation con-

stant
αI 5 [ms−1] Interneuron synaptic activation

constant
αS 1.25 [ms−1] Relay synaptic activation constant
αR 0.5 [ms−1] Reticular nuclei synaptic activation

constant
βE 3 [ms−1] Pyramidal synaptic deactivation

constant
β I 0.03 [ms−1] Interneuron synaptic deactivation

constant
βS 0.3 [ms−1] Relay synaptic deactivation con-

stant
βR 0.003 [ms−1] Reticular nuclei synaptic deactiva-

tion constant

Table 4.5: Coefficients of polynomials Ī1, κ and Ī2

Coeff. ( Ī1) Value Coeff.(κ) Value Coeff. ( Ī2) Value

p00 -213.8 q00 0.287 r00 -185.9
p10 -8.404 q10 0.01094 r10 -4.877
p01 -3.007 q01 0.001027 r01 -3.674
p20 -0.1111 q20 0.0001692 r20 -0.002785
p11 -0.07862 q11 -8.42e-6 r11 -0.1044
p02 -0.001213 q02 -4.839e-5 r02 0.01561
p30 -0.0005002 q30 8.167e-7 r30 -1.17e-5
p21 -0.0005221 q21 -3.156e-7 r21 1.897e-5
p12 -1.483e-6 q12 -4.421e-7 r12 0.0006927
p03 3.779e-5 q03 2.764e-7 r03 0.0001089
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Abstract

Complex systems manifest a small number of instabilities and bifurcations that
are canonical in nature, resulting in universal pattern forming characteristics
as a function of some parametric dependence. Such parametric instabilities
are mathematically characterized by their universal unfoldings, or normal
form dynamics, whereby a parsimonious model can be used to represent the
dynamics. Although center-manifold theory guarantees the existence of such
low-dimensional normal forms, finding them has remained a long standing
challenge. In this chapter, we introduce deep learning autoencoders to discover
coordinate transformations that capture the underlying parametric dependence
of a dynamical system in terms of its canonical normal form, allowing for a
simple representation of the parametric dependence and bifurcation structure.
The autoencoder constrains the latent variable to adhere to a given normal
form, thus allowing it to learn the appropriate coordinate transformation. We
demonstrate the method on a number of example problems, showing that it
can capture a diverse set of normal forms associated with Hopf, pitchfork,
transcritical and/or saddle-node bifurcations. This method shows how normal
forms can be leveraged as canonical and universal building blocks in deep
learning approaches for model discovery and reduced-order modeling.
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5.1 Introduction

Instabilities and bifurcations in dynamical systems are canonical in nature, tak-
ing on a small but distinct number of forms that dominate pattern formation
across every field of physics, engineering, and biology [294]. For such bifurca-
tions, local equations exist that describe the universal unfolding of the change in
qualitative behavior arising from parametric dependencies [295]. These equa-
tions, called normal forms, are low-dimensional and depend on a minimal set
of key parameters that modulate the dynamics. Current methods for charac-
terizing such instabilities require knowledge of the governing equations and
asymptotic approximations in local neighborhoods of the state and parameter
space [294, 295]. However, modern data-driven approaches aim to quantify
global behavior directly from measurements, including capturing represent-
ations of normal forms [296]. Physics-informed machine learning architec-
tures [297, 298, 299, 300] leverage the flexibility and universal approximation
capabilities of deep neural networks to learn characterizations of critical phys-
ics, including coordinate systems for the parsimonious representation of the dy-
namics [157, 301]. However, deep learning approaches have typically focused
on a single parameter regime, and they have not resulted in explicit paramet-
erizations of bifurcations and instabilities in the dynamics. In this chapter, we
use deep learning to discover the low-dimensional coordinate system that en-
codes the underlying normal form dynamics and pattern-forming bifurcation
structure of parameter-dependent high dimensional data, giving a data-driven,
low-dimensional and universal representation of the dynamics.
Model discovery and model reduction methods aim to discover coordinate
systems, or low-dimensional subspaces, in which high-dimensional data
evolves. Modal decomposition techniques, such as proper orthogonal decomposition
(POD) [302] and dynamic mode decomposition (DMD) [303], approximate linear
subspaces using dominant correlations in spatio-temporal data [304]. Linear
subspaces, however, are highly restrictive and ill-suited to handle parametric
dependencies. Attempts to circumvent these shortcomings include using
multiple linear subspaces covering different temporal or spatial domains,
diffusion maps [296, 305, 306], or more recently, using deep learning to compute
underlying nonlinear subspaces which are advantageous for the representation
of the dynamics [157, 301, 307, 308]. Deep learning provides a flexible
architecture for data representation, which has led to its significant integration
into the physical and engineering sciences [297, 298]. Specifically, within such
a framework, the sparse identification of nonlinear dynamics (SINDy) can uncover
parsimonious nonlinear models [157, 309]. Building on the SINDy framework,
the goal here is to capture the underlying normal form that encodes the
parametric dependence of the data and its underlying bifurcation.
Despite the diverse and rapid advancement of deep learning methods, the model
discovery process has not yet captured the often simple parameter-dependence
of the high-dimensional data, except with brute force parametrization. We
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Figure 5.1: Instabilities, or bifurcations, lead to pattern formation in various physical
systems that are characterized by underlying normal forms. Parameterized data across
an instability is considered, which arises from a physical system with control parameter
α (top). Such data is ubiquitous in the study of physical systems, for example,
neuroscience [310], fluid physics, ecology [311], statistical physics [312] and optics [313]
(bottom). Bottom panel figures are reproduced with permission.

highlight this issue in Fig. 5.1-A. Consider a bifurcation occurring within data
at a critical parameter α = αc. This instability induces a dramatic change in
the behavior of the system, yielding different patterns for parameter values
before and after the bifurcation. Such changes are ubiquitous in physical
systems (Fig. 5.1-B) and present a challenge to cutting-edge model discovery
methods. The different patterns are topologically inequivalent - they cannot
be mapped onto each other by continuous, invertible transformations. Thus,
observations from a single physical system yield irreconcilably different low-
dimensional models, which is challenging for the aforementioned methods. Yet
the underlying physics comes from a single model that simply walked through
a bifurcation point.
In this chapter, we present a deep learning approach that extracts low-
dimensional coordinates from high-dimensional parameter-varying temporal
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Figure 5.2: Normal for autoencoders to restrict parameterized data down to normal
form coordinates. Parameterized data is collapsed down to the underlying normal
form coordinates (z, β), with bifurcation parameter β using autoencoders (top). The
dynamics on the reduced coordinates (z, β) are given by normal form equations. The
different patterns from data are in one-to-one relation with the corresponding normal
form patterns. Our novel approach uncovers a single parameterized equation (i.e., the
normal form) that captures the parametric dependence across the data. This presents a
plethora of normal forms to choose from, depending on the pattern changes observed in
the data set (bottom).

data that exhibits instabilities. The coordinates and their parametric dependence
are discovered using autoencoders that transform observations of states and
parameters simultaneously while constraining the transformed variables to the
corresponding normal form equations, as shown in Fig. 5.2-B. We demonstrate
the method on various examples and instabilities: multiple bifurcations in a
scalar ODE model, supercritical Hopf bifurcations in 1D partial differential
equations (PDEs), and finally, a supercritical Hopf bifurcation in the 2D Navier-
Stokes equations.
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5.1.1 Normal Forms and Bifurcations.

The qualitative transitions in dynamics arising from bifurcations in temporal
data are a cornerstone of dynamical systems analysis and bifurcation theory [295,
4].
Remarkably, there are only a small number of canonical instability types [294],
allowing us to understand a diversity of instabilities manifesting in nature. For
instance, the Hopf normal form is ż = (β + iω)z + z|z|2, where the dot denotes
time derivative. ω is the rotation frequency and β is the bifurcation parameter
which characterizes the crossing of a pair of complex conjugate eigenvalues
moving from the left to right half plane in a linear stability analysis [294]. Thus,
growth of an oscillatory field is expected.
The Hopf bifurcation is only one of several bifurcations, with the simplest such
bifurcations presented in Fig. 5.2-B. These bifurcations describe the interactions
between multiple steady states upon perturbing the parameter. For a scalar
system, there are only three possible bifurcations. A stable equilibrium could
collide with an unstable one before disappearing (limit point) or split into
two stable equilibria with an unstable one in between (pitchfork). Lastly,
colliding equilibria can be followed by reemergence of the stable-unstable pair
of equilibria, but switched in position (transcritical). One of the most commonly
observed bifurcations, is the Hopf bifurcation requiring a minimum of two state
dimensions. Hopf, pitchfork, transcritical and saddle-node bifurcations are the
most commonly manifest instabilities of physical systems [294].
Dynamical systems theory and center manifold theorems [295] provide con-
ditions for the existence of low-dimensional subspaces, or center manifolds,
where the dynamics of the projection of the original dynamics, is given by
the normal form. These theorems guarantee that a high-dimensional system
u̇ = f (u, α), u ∈ Rn, n ≫ 1 depending on a parameter α exhibit generically a
low dimensional model, typically one or two dimensional. Moreover, these the-
orems state that if u(α) exhibits a saddle-node bifurcation, there exists a smooth
invertible transformation ϕ such that the dynamics of ϕ(u(α)) are given by the
saddle-node normal form. Thus center manifold theorems give guarantees that
low-dimensional coordinates can be constructed using an appropriate normal
form transformation ϕ.

5.1.2 Deep Learning of Normal Forms.

Consider a high-dimensional system u(x, t; α) parameterized by α where x
denotes space, t denotes time. Discretizing u along n spatial locations x gives
the vector u(t) ∈ Rn. Further discretizing along d timepoints gives the dataset
U ∈ Rn×d composed of columns u(t) for t = t1, . . . , td. Note that the data set
U is parameterized by the parameter α. The data measures a local instability
at α = αc ∈ R. The objective is to extract low dimensional coordinates
z ∈ Rm, m ≪ n and β ∈ R such that the dynamics of z are given by the
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normal form of the instability,

ż = g(z(t), β). (5.1)

The coordinates z are extracted by constructing smooth, invertible transforma-
tions ϕ1 and ϕ2 such that

z(t) = ϕ1u(t) and β = ϕ2α, ∀t. (5.2)

We compute the functions ϕ1 and ϕ2 using deep learning. In particular,
ϕ1 and ϕ2 are represented as fully connected neural networks. Further, we
simultaneously compute neural networks ψ1 and ψ2 such that

ψ1ϕ1(u) ≈ u and ψ2ϕ2(α) ≈ α (5.3)

to make ϕj invertible. Such an approach is now standard in deep learning theory,
and the pair (ϕj, ψj) is collectively referred to as an autoencoder [314].
Figure 5.2-A shows the two autoencoders (ϕj, ψj), j = 1, 2, corresponding to the
state and parameter respectively. Combining equations (5.1) and (5.2) gives,

ż = d/dt(ϕ1u) = (∇u ϕ1)u̇ = g(ϕ1u, ϕ2α). (5.4)

This relation is exploited to constrain the two autoencoders to the normal form
(5.1). This is accomplished by computing minimizers of a loss function L that
takes in the high-dimensional dataset u, the neural networks ϕj, ψj and the
parameter α,

ϕ̂j, ψ̂j = arg min
Θ

L(u, α, ϕj, ψj) = arg min
Θ

∑
k

Lk, (5.5)

where Θ is the large set of parameters underlying the autoencoders (ϕj, ψj). The
various terms Lk are outlined as follows. Terms L1,2 are the autoencoder loss
terms that ensure ϕj and ψj are inverses of each other, enforcing Eq. (5.3):

L1 = λ1‖u − ψ1ϕ1u‖22, L2 = λ2‖α − ψ2ϕ2α‖22.

The consistency loss terms L3,4 constrain the autoencoders to the condition
Eq. (5.5) and are given by,

L3 = λ3‖∇uu̇ − g(ϕ1u, ϕ2α)‖22,

L4 = λ4‖u̇ − (∇zψ1)g(ϕ1u, ϕ2α)‖22.

Lastly, the orientation loss terms L5,6 ensure proper affine translation of the
coordinates (u, β) with respect to the original coordinates (u, α) and are given
by,

L5 = λ5‖Et ϕ1u‖22, L6 = λ6‖sgn(α)± sgn(ϕ2α)‖22,
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Figure 5.3: Learned normal form coordinates for the various bifurcations present in the
1D system Eq. 5.6. For each bifurcation, traces from learned test samples are plotted (in
blue) against an ensemble of simulations of the underlying normal form (yellow).

where Et denotes expectation over the entire time trace. The neural networks
require training data in order to learn the autoencoder structure. The
training data consists of dynamical trajectories where the initial conditions and
parameters are chosen from a uniform distribution. They are shuffled and paired
together and then used together to simulate trajectories. Once trajectories are
computed, they are divided into training and testing datasets. The testing
dataset is used to assess the performance of the autoencoder scheme, while
training data is used to learn the neural networks. The neural networks ϕ1

and ψ1 require u and u̇ as input, while ϕ2 and ψ2 take α as input. They are
then trained using the ADAM optimizer [315] for a fixed choice of parameters
λi. For each of the examples presented ahead, details on training and validation,
choice of neural networks, and regularization parameters λi can be found in the
Appendix.

5.2 Results

In this section we demonstrate our method on four nonlinear dynamical systems:
a scalar ODE, a neural field equation, the Lorenz96 equations and the Navier
Stokes equation solved on a 2D spatial domain.

5.2.1 Scalar ODE system

The autoencoder scheme is first demonstrated on a system that exhibits the three
scalar normal forms introduced in Figure 5.1-B. The system is characterized by



110 Chapter 5. Normal form autoencoders for data-driven model discovery

Figure 5.4: Learned Hopf normal form coordinates for the two high-dimensional
systems, Lorenz96 (Eq.5.7) and Neural Field (Eq. 5.8), using test dataset samples. In both
cases, imulations (u, α) are shown alongside the learned normal form coordinates (z, β)
(in blue) for values of α on both sides of the Hopf bifurcation point. For comparison, the
Hopf normal form is simulated and plotted in the background (yellow).

a scalar ODE, given by

u̇ = γu(α − αpf − u2)(α − αsn + (u − usn)
2), u ∈ R, (5.6)

where γ = 0.01, usn = αsn = −6 and αpf = 6. The bifurcation diagram of
Eq. (5.6) in Fig. 5.3 shows how all the different scalar bifurcations are distributed
in parameter space. Our objective is to use data generated from Eq. 5.6 and
constrain it to each of the three individual normal forms. For each bifurcation
scenario, data is collected from the neighborhood of a bifurcation and then
constrained to the respective normal form using the autoencoder. A total of
500 initial conditions (u, α) are sampled per bifurcation scenario and used for
training. Results are presented in Fig. 5.3. For each bifurcation, samples from
test data are transformed to (z, β) coordinates using ϕ1,2 and plotted against
time (blue) for different α. An ensemble of simulations (in yellow) of the normal
form are used for comparison. The learned coordinates (z, β) show remarkable
agreement with the normal form, for each of the three bifurcation scenarios.
Next, we consider two 1D spatio-temporal systems, that exhibit supercritical
Hopf bifurcations, the Lorenz96 equations [316] and the neural field equa-
tions [120]. Although the bifurcation is the same, the pattern formation is dif-
ferent. In the Lorenz96 case, the Hopf bifurcation manifests in a travelling wave
pattern [317], while an oscillatory bump solution, called a ‘breather’, emerges in
the neural field equation [318], see Fig. 5.4.

5.2.2 Lorenz96 system.

The Lorenz96 equations [316] are widely used in model discovery and data
assimilation. The equations are given by

u̇j = −uj−1(uj−2 − uj+1)− uj + α, u ∈ R
n (5.7)
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for j = 1, 2, 3...n with boundary conditions u1 = un and u2 = un−1. For n = 64,
the trivial equilibrium u = α undergoes a supercritical Hopf bifurcation with
respect to α at α = α0 = 0.84975 [317]. Across the bifurcation, a stationary
solution transits to a moving stripe pattern, which is interpreted as a travelling
wave solution. We sampled 103 initial conditions (u, α) to train the neural
networks. Results using test data are shown in Fig. 5.4. The learned coordinates
z (in blue) are two-dimensional and match well with the simulated Hopf normal
form (yellow) on both sides of the bifurcation.

5.2.3 Neural field equation.

The neural field equations describe the neuronal potential for a one-dimensional
continuum of neural tissue [120, 119]. The dynamics due to an input
inhomogeneity lead to a Hopf bifurcation of a stationary pattern leading to
breathers when varying the input strength [318, 310]. The governing equations
are

u̇ = −u − κa + (w ∗ f (u)) + I(x), ȧ = (u − a)/τnf . (5.8)

The operator ∗ represents a spatial convolution with w(x) ≡ w(x − y) =
we exp(−((x − y)/σe)2) the spatial connectivity kernel and f (u) is a sigmoid

given by f (u) =
(

1+ exp(βnf (u − uthr))
)

transforming the potential u into

a firing rate. The spatially non-uniform input I(x) is given by I(x) =
α exp(−(x/σ)2) where κ=2.75, τnf =10, we =1, σe =1, βnf =6, uthr=0.375, σ=1.2.

A supercritical Hopf bifurcation with respect to a stationary bump response
occurs at α = 0.8040. In contrast to the Lorenz96 case, the stationary bump
solution transits to an asymptotically stable periodic solution [310]. States
(u, a) are discretized over a uniform spatial grid of size 64 each. Then, 103

initial conditions (u, α) are used to generate training data. The normal form
autoencoder results are presented in Fig. 5.4. Even though the pattern formation
in this example is different from Lorenz96, the learned coordinates match the
Hopf normal form behavior again.

The 1D PDEs considered are relatively low dimensional systems. For such
systems, training fully connected neural network-based autoencoders is feasible.
However, considering higher-dimensional PDEs leads to the so-called ‘curse of
dimensionality’, and using fully connected neural networks is no longer feasible.
In this situation, one has two options: use neural networks designed to assuage
the curse of dimensionality, or reduce the dimension of data prior to training. In
the next example, we choose the latter.
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Figure 5.5: Training the normal form autoencoder over POD data generated from fluid
flow past a cylinder. First, Eq. 5.9 is solved using 250 initial conditions (ω, Re) generated
across the vortex shedding instability [319]. Then proper orthogonal decomposition
is performed to obtain spatial modes φ(x) and their temporal coefficients λ(t), which
forms a low-dimensional dynamical system, which is used to train the normal form
autoencoder.

5.2.4 Fluid flow in 2D.

As a more challenging example, we simulate the fluid flow past a circular
cylinder with the two-dimensional, incompressible Navier-Stokes equations:

∇ · u = 0, ∂tu + (u · ∇)u = −∇p +
1

Re
∆u (5.9)

where u is the two-component flow velocity field in 2D and p is the pressure
term. For Reynold’s number Re = Rec ≈ 47, the fluid flow past a cylinder
undergoes a supercritical Hopf bifurcation, where the steady flow for Re < Rec

transitions to unsteady vortex shedding [319]. The unfolding of the transition
gives the celebrated Stuart-Landau ODE, which is essentially the supercritical
Hopf normal form written in complex coordinates, and this has resulted in
accurate and efficient reduced-order models for this system [320, 321].
The scalar vorticity field ω ≡ ∇× u is useful in reducing the complexity of the
problem to a single component per grid point. The Hopf bifurcation persists in
the vorticity field, and we use the vorticity field to construct datasets. Datasets
are generated over a 2D spatial grid of 487 × 250 points across the domain
[−2, 10] × [−3, 3]. The discretization results in 121750 grid points, illustrating
the aforementioned curse of dimensionality. This is mitigated by restricting the
dataset to a lower dimension using proper orthogonal decomposition [297].
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The normal form autoencoder provides a fundamentally different approach to
characterizing the low-dimensional dynamics than Galerkin projection of the
governing equations onto POD modes [320, 321, 302]. First, Eq. 5.9 is solved and
the vorticity field ω(t, x) is computed. The reduced-order dynamical system
λ(t) is derived from the method of snapshots. Here, λ ∈ R4. This dynamical
system characterizes the temporal evolution of spatial modes φ(x), that are kept
aside. An example of spatial modes φ(x) and their temporal coefficients λ(t) are
presented in Fig. 5.5. The temporal coefficients λ(t) are then used to train the
neural networks. The training dataset is generated from 250 initial conditions
(ω, Re). The learned coordinates (z, β) show agreement with the Hopf normal
form dynamics (not shown). Further, the spatial modes φ(x) are used to project
the learned coordinates (z, β) back to the vorticity field ω using the relation
ω̂ ≈ ω̄ + ∑j φj(x)(ψ1ϕ1λj(t)), where ω̄ is the time-averaged solution. The
reconstructed vorticity field ω̂ shows remarkable agreement with ground truth
for cases on either side of the bifurcation, demonstrating good agreement of the
learned ψ1 with the inverse of the encoder ϕ1.

5.3 Conclusion

We demonstrated how to use deep learning to discover a coordinate transform-
ation in which dynamics can be directly characterized in terms of universal
normal form descriptions. Such embeddings of parameter-dependent dynam-
ics automate many of the theoretical constructions used to characterize spatio-
temporal pattern forming systems [294]. Indeed, the architecture leverages the
vast body of knowledge concerning the small number of canonical instabilit-
ies that emerge in diverse models of physics, biology, and engineering. Our
approach is currently limited by the vast state-parameter space required to be
sampled to learn the whole phase space properly. Moreover, the approach cur-
rently requires a priori knowledge of the observed bifurcation, and this can per-
haps be remedied with an offline detection step in the dataset. Model discovery
techniques like SINDy [157] can then be leveraged to identify a bifurcation based
on a library of normal forms.
Our approach has consequences for dynamical systems theory and data-driven
model discovery alike. The approach can be extended to discover underlying
low-dimensional, reduced-order models and center-manifold reductions using
normal forms as the fundamental building blocks. Moreover, the method
makes use of theoretical guarantees that allow such embeddings to exist. The
flexibility of the autoencoder provides a modeling framework for finding the
required coordinate transformations to the low-rank, universal unfolding of the
dynamics.
All of the code used to produce the results presented in this chapter is available
publicly on GitHub at:
github.com/dynamicslab/NormalFormAE.
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5.4 Appendix

This appendix describes the data acquisition, preprocessing and neural network
training for the normal form autoencoder approach.

Data acquisition for training

For each of the examples, datasets U, U̇ and α are constructed, which serve
as inputs to the neural networks. These datasets are obtained by solving the
corresponding governing equation. In this chapter, the governing equation is
characterized by a parameterized, smooth, autonomous differential equation

u̇ = f (u, x; α), u ∈ R
n, n ≥ 1. (5.10)

The solution u ≡ [u(x1, t), . . . , u(xN , t)]T is defined on a finite spatiotemporal
grid (x, t) using the initial value (u0, α0). The datasets U, U̇ and α are
constructed by concatenating several solutions u for a collection of initial values
(u0, α0). First, we define datasets

U(j) ≡ U(α = α(j)) =







| |
u
(j)
0 . . . u

(j)
t f

| |






,

U̇
(j) ≡ U̇(α = α(j)) =







| |
f (u

(j)
0 ; α(j)) . . . f (u

(j)
t f

; α(j))

| |






, (5.11)

where t f denotes the final time point. The function f (u; α) is defined by
vectorizing f over the discrete spatial grid x,

f (u; α) =





|
f (u, xj)

|



 . (5.12)

The solution U(j) may contain transients to the steady state solution, which are
removed. Trimming off transients allows sampling of trajectories closer to steady
state solutions, resulting in better conformity to normal form dynamics.

Next, N initial conditions (u(j)
0 , α(j)) are stacked together to get the datasets U, U̇

and α,

U =
[

U(0) . . . U(N)
]

, U̇ =
[

U̇
(0) . . . U̇

(N)
]

and α =
[

α0 . . . αN

]

(5.13)
Datasets

Xtrain = {U(train), U̇
(train), α(train)},

Xtest = {U(test), U̇
(test), α(test)},
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are constructed for training and validation, respectively. The results presented
in the main manuscript are performed over validation sets for each example.

Choosing initial values (u0, α0)

The initial condition (u0, α0) is sampled from a uniform distribution U based on
the domain [−1, 1] such that points from either side of the bifurcation parameter
αc are uniformly sampled. First, parameters σu and σα are fixed, such that

u0 = uc + σuU [−1, 1],

α0 = αc + σαU [−1, 1] (5.14)

where u = uc is the steady state (equilibrium) at which the bifurcation occurs.

Training

The neural networks ϕ1,2, ψ1,2 are fully connected neural networks with a single
activation function active in the hidden layers only. In this chapter, we use the
hyperbolic tangent (tanh, for all Hopf examples) and exponential linear unit
(elu, for scalar ODE examples) functions as activation, as they allow for the
transformed data to be smoothly equivalent to the original dataset. This choice
makes the corresponding encoder and decoder smooth. After training, ψ ◦ ϕ ≈ I,
which makes ϕ approximately a diffeomorphism. Using center manifold theory
[4], we thus obtain the existence of feasible solutions to the neural network
problem.

The input to the normal form autoencoder is the set Xtrain, as introduced earlier.
In the latent space, we get

Z = ϕ1U,

β = ϕ2α, (5.15)

where we drop the subscript (train) for notational convenience. Passing the two
latent variables through the decoder gives

Û = ψ1z,

α̂ = ψ2β. (5.16)

We also compute ˙̂U and ż in order to compute the consistency loss terms. This
is done via the chain rule as follows

ż =
d

dx
(ϕ1U)

= (∇u ϕ1)U̇.
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In order to compute ˙̂U, we first compute the time-derivative estimate of the
latent variable, ˙̂z which is given by

˙̂z = g(z, β).

This gives ˙̂U via the relation

˙̂U = (∇zψ1) ˙̂z. (5.17)

The loss function L is thus given by,

L = ∑
j

Lj (5.18)

where,

L1 = λ1
1

Nt f
∑
k

‖uk − ûk‖22 = λ1
1

Nt f
∑
k

‖uk − ψ1ϕ1uk‖22,

L2 = λ2
1

Nt f
∑
k

‖αk − α̂k‖22 = λ2
1

Nt f
∑
k

‖αk − ψ2ϕ2αk‖22,

L3 = λ3
1

Nt f
∑
k

‖ ˙̂zk − żk‖22 = λ3
1

Nt f
∑
k

‖(∇u ϕ1)u̇k − g(ϕ1uk, ϕ2αk)‖22,

L4 = λ4
1

Nt f
∑
k

‖ ˙̂uk − u̇k‖22 = λ4
1

Nt f
∑
k

‖u̇k − (∇u ϕ2)g(ϕ1uk, ϕ2αk)‖22,

L5 = λ5
1

N

∥

∥

∥

∥

∥

1

t f
∑
k

uk

∥

∥

∥

∥

∥

1

= λ5
1

N
‖EtU‖1,

L6 = λ6
1

Nt f
‖sgnα − sgnβ‖1 = λ6

1

Nt f
‖sgnα − sgn(ϕ1α)‖1.

Once the loss function is computed, the set of neural network parameters
Θ, comprising both autoencoders, are simultaneously trained using the
ADAM optimizer [322] with learning rate η, whose value depends on the
example. For all examples, the Flux.jl package in the Julia language
is used to train the neural networks. All code is available online at
github.com/dynamicslab/NormalFormAE. For visualization, the latent dynamics
z are plotted for all samples in the validation dataset. Using a uniform
distribution of initial conditions centered around (z0, β) = (ϕ1u0, α), an
ensemble of simulations of the normal form are generated and plotted in the
background. The neural networks are trained repeatedly over the batches of
data generated (called epochs) till the fit to the simulations in the latent space
stabilizes.

Orientation loss terms L5,6

The loss terms L5,6 ensure that the latent variables (z, β) are properly oriented
with respect to the normal form, and are hence called orientation loss terms.
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Generically, the state variables in normal forms are scaled such that the
bifurcation occurs at (z, β) = (0, 0). Loss term L5 ensures that the time
average of the latent space of a simulation is constrained to 0. This is pertinent
specifically to the supercritical Hopf normal form, where the stable equilibrium
for β < 0 is at z = 0, and the stable periodic orbit for β > 0 is centered around
the now unstable equilibrium z = 0. The loss term L6 ensures that the direction
of the bifurcation in the latent space is consistent with that of the normal form.

Choice of regularization constants λi

The choice of regularization parameters λj depends on the example in
consideration. They remain fixed for the entire training procedure. However,
parameters λ3 and λ4 are the most sensitive and generally require testing by
training the architecture for short epochs before making a final choice. The
parameter λ3 controls the fit of the latent space to the normal form, while the
parameter λ4 makes sure that the reconstructed data û fits up to the first-order
time derivative. For large values of these two parameters, the training procedure
prioritizes the latent space fit, which in practice results in the latent variables
converging to the solution z = 0. On the other hand, for very small values of λ3

and λ4, the latent space does not match well with the normal form simulations.
As a rule of thumb, we choose λ3,4 such that the corresponding loss terms L3,4
are a factor 10−2 of the autoencoder loss term L1. This choice prioritizes the
term L1 slightly more, as done in [26], which is beneficial as the autoencoder fit
for (ϕ1, ψ1) is typically the slowest moving loss term during training iterations.
For large values of λ5, the solution z = 0, ż = 0 is prioritized. In order to avoid
this, λ5 is kept low.

Scaling time with τ

this chapter deals with projecting dynamics u onto a low dimensional manifold
such that the dynamics u on such a manifold obey a specific normal form
equation. However, this introduces a time scale problem when dealing with
finite time trajectories u. Let us assume that data U corresponds to a Hopf
bifurcation. For α > 0 close to αc, the period of the resulting periodic orbit is
Tα ≈ 2π/ωu, where ωu is the imaginary part of the center eigenvalue of the
linearization of the dynamical system u̇ = f , at the αc. Any diffeomorphism
of such a signal will preserve the period if the periodic orbit persists. Thus the
corresponding latent variable Z would also have period Tα. However, the period
Tβ corresponding to the Hopf normal form for β = ϕ2α would be different,
as ωz 6= ωu. Thus, we introduce a time scaling parameter τ to mitigate the
difference in the period. This is done by introducing a new time t∗ such that,

t∗ = τ2t, (5.19)
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which gives a scaled normal form equation

d
dt∗

z =
1

τ2
g(z, β). (5.20)

The time scaling parameter τ is included in the neural network parameter set
Θ and learnt simultaneously. However, for the supercritical Hopf bifurcation
examples, τ can be approximated theoretically and thus does not need to be
trained. The value of τ is set to

τ =
√

Tα/Tβ, (5.21)

where Tα and Tβ are estimates of the period approximated from data U and Hopf
normal form simulations, respectively, for parameters close to the bifurcation
value. These estimates are readily made using Fourier transforms of the
simulated time traces after removing transients to the periodic steady state.

Data generation

Normal Form Hopf
uc u = α
αc 0.84975
σu 0.1
σα 0.5
Time domain [0, 80]
Space domain [−32, 32], 64 points
tsize 500
Training set size 1000
Test set size 20
Trim First 200 points

Training parameters

λ1 1

λ2 10−2

λ3 10−3

λ4 10−3

λ5 0

λ6 10−1

Batchsize 100
Ubatch dimension 64× 30000
Zbatch dimension 2× 30000
ϕ1 hidden layers [32,16]
ψ1 hidden layers [16,32]
ϕ2 hidden layers [16,16]
ψ2 hidden layers [16,16]
τ 0.825
ηADAM 10−4

Epochs 1000

Table 5.1: Data generation and training parameters for the Lorenz96 example.

Demonstrated systems

This section elaborates on the systems that were used to demonstrate the normal
form autoencoder approach in the main manuscript and provides explicit
training and validation details.

1D model

The scalar ODE explored is a toy model constructed to include all the major
scalar bifurcations: saddle-node, pitchfork and transcritical. Data Xtrain is
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Data generation

Normal Form Hopf
uc Not analytical
αc 0.8040
σu 0.1
σα 0.5
Time domain [0, 100]
Space domain [−6, 6], 64 points
tsize 250
Training set size 1000
Test set size 20
Trim First 50 points

Training parameters

λ1 1

λ2 10−2

λ3 10−4

λ4 0

λ5 10−3

λ6 0
Batchsize 250
Ubatch dimension 128× 50000
Zbatch dimension 2× 50000
ϕ1 hidden layers [64,32]
ψ1 hidden layers [32,64]
ϕ2 hidden layers [16,16]
ψ2 hidden layers [16,16]
τ 1.4
ηADAM 10−4

Epochs 2000

Table 5.2: Data generation and training parameters for the Neural Field example. As the
critical equilibrium point is not analytical, this is computed by allowing the simulation to
stabilize after t ≫ 1.

Data generation

Normal Form Hopf
uc Not analytical
Rec 44.6
σu 10−2

Re domain [30, 70], 240 points
Time domain [0, 77]
Space domain [−2, 10]× [−3, 3],

487× 250 points
tsize 6180
Training set size 220
Test set size 20
Trim First 3250 points

Training parameters

λ1 1
λ2 1

λ3 10−4

λ4 10−4

λ5 0

λ6 10−1

Batchsize 110
Ubatch dimension 4× 32230
Zbatch dimension 2× 32230
ϕ1 hidden layers [20,20,30]
ψ1 hidden layers [20,20,20]
ϕ2 hidden layers [10,10]
ψ2 hidden layers [10,10]
τ 0.6
ηADAM 10−3

Epochs 2700

Table 5.3: Data generation and training parameters for the Navier Stokes example.
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collected from the vicinity of each of the bifurcation points and used to train the
normal form autoencoder separately for each bifurcation scenario. The system
is given by

u̇ = γu(α − αpf − u2)(α − αsn + (u − usn)
2), u ∈ R, (5.22)

where γ = 0.01, xsn = αsn = −6 and αpf = 6. The three bifurcations occur at:

saddle-node: (u, α) = (usn, αsn)

Pitchfork: (u, α) = (0, αpf )

Transcritical: (u, α) = (0, αsn − u2
sn)

Before constructing the dataset X, the system (5.22) is first translated such that
the bifurcation in consideration occurs at (u, α) = (0, 0). For example, in the
case of the pitchfork bifurcation, the translation (u, α) 7→ (u, α + αpf ) results in
the new system,

u̇ = γu(α − u2)(α + αpf − αsn + (u − usn)
2). (5.23)

The third term in the above equation is positive for sufficiently small |α|.
Thus, equation (5.23) is smoothly equivalent to the pitchfork normal form
u̇ = u(α − u2) [4]. Smooth equivalence preserves orbits and the direction of
time, but not the speed. We observe that the pitchfork normal form is scaled by
a positive function h(u, α) given by,

h(u, α) = γ(α + αpf − αsn + (u − usn)
2). (5.24)

Thus,

u̇ = γu(α − u2)(α + αpf − αsn + (u − usn)
2)

= h(u, α)u(α − u2)

≈ 1

τ2
u(α − u2), τ 6= 0 for |u|, |α| sufficiently small.

This parameter τ is precisely the time scaling parameter introduced before,
which we learn simultaneously with the neural network parameters while
training. It can be shown for all other bifurcation scenarios that such a
scaling would be necessary, and thus we learn the parameter τ for each case
individually. Training results are shown in Fig. 5.6

Lorenz96

The Lorenz96 system [317, 316] is given by,

u̇j = −uj−1(uj−2 − uj+1)− uj + α, u ∈ R
n, (5.25)

for j = 1, 2 . . . n with boundary conditions u1 = un and u2 = un−1. In this
chapter, n = 64, for which a supercritical Hopf bifurcation occurs at the trivial
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Figure 5.6: Validation results post-training for the scalar ODE example. The learned
normal form coordinates computed via the formula z = ϕ1(U) is plotted against time t

(in blue) for several simulations Ntest = 20 in the validation set (test data). The different
simulations are separated from each other by a vertical gray line. The simulation of
the respective normal form is plotted in the background in yellow, which represents an
ensemble of 20 trajectories with initial values chosen from a uniform distribution around
the first time point ϕ1u0 and parameter β = ϕ2α. For each example the corresponding
ground truth parameters (α, in blue) and learned parameters (β, in orange) are also
shown. Note that the parameter signs for the transcritical bifurcation are flipped as the
direction of the bifurcation is in the reverse direction with respect to the normal form.
For the transcritical case, the orientation term λ6 is kept 0.
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equilibrium u = α, for α = 0.84975. As done in the previous section, the system
is translated such that the bifurcation occurs at the origin. Moreover, for all
choice of parameter α, it is made sure that the equilibrium occurs at the origin
u = 0. This is done via the translation (u, α) 7→ (u + α, α + αc), where αc is the
bifurcation point α = 0.84975.

The system is solved with 1000 initial conditions (u, α) over a temporal domain
[0, 80], with 500 time points per simulation. The transients to the travelling wave
pattern state are removed by neglecting the first 200 points of the simulation.
The training set Xtrain thus comprises of 1000 simulations, giving rise to 3× 105

training samples. For each training iteration, a batch of 100 simulations is used,
giving rise to 10 training iterations per epoch. The system is trained for 1000
epochs or 104 training iterations.

Neural Field

The neural field equations [120, 119] are a system of integrodifferental equations
that describe the dynamics of electrical activity in spatially continuous neural
tissue. In this chapter, we consider a specific formulation of neural field
equations with an input inhomogeneity that manifests in a Hopf bifurcation of
a stationary pattern leading to breathers when varying the input strength [318,
310]. The governing equations are

u̇ = −u − κa + (w ∗ f (u)) + I(x), ȧ = (u − a)/τnf . (5.26)

Here again, we translate the system such that the equilibrium and the bifurcation
point both occur at the origin. However, in contrast to the Lorenz96 example,
an analytical expression for the bifurcating equilibrium is absent. This is
approximated from data. First, the parameter is translated to the bifurcation
point α 7→ α + αc, where αc = 0.804 is the bifurcation point. The system is then
solved for several initial conditions (u, α). Next, for α < 0, the last point ut f

of the simulation to be the equilibrium ueq and for α > 0, the time average of
the simulation EtU

(j), after ignoring transients, is chosen as the equilibrium ueq.
Then the translation u 7→ u + ueq is performed.

The system is solved with 1000 initial conditions (u, α) over a temporal domain
[0, 100] with 250 time points per simulation. The first 50 points correspond
to transients to the periodic breather solution and are removed. The training
set thus comprises of 1000 simulations, giving rise to 2× 105 training samples.
A validation set of 20 simulations is constructed separately. A batch of 250
simulations is used for each training iteration, giving rise to 2 training iterations
per epoch. The system is then trained for 2000 epochs on the training set, or 4000
training iterations. Training results for both Neural field and Lorenz96 cases are
shown in Fig. 5.7.
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Figure 5.7: Validation results post-training for the neural field and Lorenz96 examples.
The learned normal form coordinates computed via the formula z = ϕ1(U) is plotted
against time t (in blue) for several simulations Ntest = 20 in the validation set (test
data). The different simulations are separated from each other by a vertical gray line.
The simulation of the respective normal form is plotted in the background in yellow,
which represents an ensemble of 20 trajectories with initial values chosen from a uniform
distribution around the first time point ϕ1u0 and parameter β = ϕ2α. For each example
the corresponding ground truth parameters (α, in blue) and learned parameters (β, in
orange) are also shown. Note that the bifurcation parameter αc is translated to 0 prior
to training. In the Neural field example, the square root effect of the Hopf amplitude
fades away for large α > 0, possibly due to the original parameter α being far from the
bifurcation point.



124 Chapter 5. Normal form autoencoders for data-driven model discovery

Fluid flow past a cylinder (Navier Stokes)

The final example leverages the model decomposition technique proper
orthogonal decomposition (POD) on a high dimensional dataset of fluid flow
past a cylinder constructed by solving the Navier Stokes PDE on a 2D domain,
to obtain a reduced order dataset on which the normal form autoencoder is
trained. The PDE is given by,

∇ · u = 0, ∂tu + (u · ∇)u = −∇p +
1

Re
∆u, (5.27)

where u is the two-component flow velocity field in 2D and p is the pressure
term. For Reynold’s number Re = Rec ≈ 47, the fluid flow past a cylinder
undergoes a supercritical Hopf bifurcation, where the steady flow for Re < Rec

transitions to unsteady vortex shedding [319]. We analyse the one component
vorticity field w for the remainder of the chapter, given by,

w = ∇× u. (5.28)

The training set is formulated in three steps:

Simulate system (5.27) for several initial conditions (u, Re) and generate
dataset U(j), j = 1, 2, . . . and compute vorticity W .

For each simulation, obtain a reduced order dataset Λ by projecting the
solution U(j) onto finitely many POD modes.

Perform a linear transformation of Λ to ‘mix’ the ordered set of harmonics
Λ.

Simulation. The Navier-Stokes PDE is solved for 250 initial values (u, Re)
centered around the critical point Rec ≈ 44.6 on the spatial domain x × y =
[−2, 10]× [−3, 3] with 487× 250 spatial grid points. The choice for ∆x, ∆y and
∆t is made by using the cell Reynold’s number of 1.3 for Re = 80, and calculating
the appropriate CFL condition after setting ∆t. The temporal domain is [0, 77]
comprising of 6180 time steps per simulation. The cylinder is represented as a
circle centered at (x, y) = (−1, 1) with diameter 1. Equation (5.27) is solved in
voriticity form using the immersed boundary projection method [304] which is
implemented in the Julia package ViscousFlow.jl. This procedure gives us the
dataset W (j).

Projection onto POD modes. Proper orthogonal decomposition is a model
decomposition technique that constructs a set of spatial basis functions in
descending energy, from which a reduced order dataset can be created by
projecting only onto a few high-energy modes [323]. Thus, a solution w(x, t)
is written as a Galerkin projection onto POD modes φ(x) and their evolving
temporal coefficients λ(t) as follows,

w(x, t) = w̄ + ∑
k

σkφ(x)kλk(t), (5.29)
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Figure 5.8: POD calculations and validation results post-training for the fluid flow
example (Navier Stokes). In the top two rows, the POD spatial modes and their temporal
coefficients are shown, as computed via SVD. Next, the learned normal form coordinates
computed via the formula z = ϕ1(ΓΛ) is plotted against time t (in blue) for several
simulations Ntest = 10 in the validation set (test data). The different simulations are
separated from each other by a vertical gray line. The simulation of the respective
normal form is plotted in the background in yellow, which represents an ensemble of
20 trajectories with initial values chosen from a uniform distribution around the first
time point ϕ1u0 and parameter β = ϕ2α. The corresponding ground truth parameters (α,
in blue) and learned parameters (β, in orange) are also shown.
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where w̄ represents the mean flow EtW . The coefficients σk form a descending
sequence of singular values. In practice, the spatial modes are computed using
the ‘method of snapshots’ [324] implemented by singular value decomposition
(SVD). Thus, for a simulation W (j), SVD yields unitary matrices U, V and a
diagonal matrix Σ such that

W (j) = UΣVT . (5.30)

The columns of matrix U represent the spatial modes, for which the columns
of V give the temporally evolving coefficients. The matrix Σ is composed of t f

singular values in descending sequence, which is significantly smaller than the
state space dimension (121750). Choosing the first m singular values generates
an approximate reduced order model,

W (j) ≈ UmΣmVT
m , (5.31)

where Um and Vm are truncated matrices composed of the first m columns of U
and V, respectively. We work with m = 4, which gives a reduced-order model
V of dimension 4. The SVD is performed in four steps:

First the transients to the vortex shedding solution or the planar flow
solution are trimmed off the first 3250 points.

Next, the mean flow of the trimmed solution is computed and subtracted
from the simulation.

Finally, POD is permed via the method of snapshots, but on a dilated
temporal scale, using ∆t 7→ 10∆t, as done in [325]. This yields matrices
U, V and Σ, where V has dimension 293× 293.

The truncation above is performed on the matrices obtained via SVD, to
obtain the dynamical system V with dimension 4× 293.

The reduced order dynamical system Λ
(j) is then given by

Λ
(j) = Σ

(j)
m (V(j))T , (5.32)

where the superscript (j) indicates index of a specific simulation.

Linear transformation of Λ. The resulting dynamical system Λ is composed
of rows of pairwise harmonics that increase in frequency and decrease in
amplitude for an increasing number of rows. Following suggestions from
[320] on constraining Galerkin models to the Stuart-Landau expression (Hopf
normal form), we introduce a linear transformation Γ of Λ, before training.
This preserves the original frequency of the periodic orbit, but has the added
disadvantage of introducing multiple timescale dynamics in the periodic orbit,
which can be hard to remove in the latent space dynamics. Γ is chosen randomly,
but in such a way that its condition number is close to 1. In other words,
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we choose Γ to be unitary. This choice has the advantage of obtaining better
reconstruction when projecting back into the original 2D space, as the higher-
order harmonics in Λ are preserved. This is done by first generating a random
matrix Γ̃, and obtaining Γ via SVD,

Γ̃ = UΣVT ,

Γ = UVT .

In the results we show in the manuscript, this matrix Γ is given by,

Γ =









0.154739 −0.523688 0.675546 0.495243
0.87244 0.298319 0.249166 −0.29685

−0.292797 0.785392 0.450626 0.30719
0.359894 0.141123 −0.527721 0.756353









. (5.33)

Reconstruction post training. The dynamical system ΓΛ(j) is used for training

the normal form autoencoder. The spatial modes U
(j)
m and the mean solution

w̄(j) are stored offline, and are used to reconstruct the full simulation Ŵ
(j)

via
the relation

Ŵ
(j)

= w̄ + U(j) · ΓT
Λ̂

(j), (5.34)

where Λ̂
(j) is the projection of the latent space onto the larger dimensional space

via the state decoder ψ1,

Λ̂
(j)

= ψ1(ϕ1ΓΛ(j)). (5.35)

POD modes and their projections onto the normal form coordinates are shown
in Fig. 5.8.
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Abstract

A saddle to saddle-focus homoclinic transition when the stable leading
eigenspace is 3-dimensional (called the 3DL-bifurcation) is analyzed. Here a pair
of complex eigenvalues and a real eigenvalue exchange their position relative
to the imaginary axis, giving rise to a 3-dimensional stable leading eigenspace
at the critical parameter values. This transition is different from the standard
Belyakov bifurcation, where a double real eigenvalue splits either into a pair
of complex-conjugate eigenvalues or two distinct real eigenvalues. In the wild
case, we obtain sets of codimension 1 and 2 bifurcation curves and points that
asymptotically approach the 3DL-bifurcation point and have a structure that
differs from that of the standard Belyakov case. We give an example of this
bifurcation in a perturbed Lorenz-Stenflo 4D ODE model.

6.1 Introduction

Homoclinic orbits play an important role in the analysis of ODEs depending on
parameters

ẋ = F(x, α), x ∈ R
n, α ∈ R

m, (6.1)

where F is sufficiently smooth in both phase components and parameters. Orbits
homoclinic to hyperbolic equilibria are of specific interest, as they are structurally
unstable, and the corresponding parameter values generically belong to codim
1 manifolds in the parameter space Rm. Bifurcations in generic one-parameter

129
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families transverse to such manifolds depend crucially on the configuration of
leading eigenvalues of the equilibrium, i.e. the stable eigenvalues with largest real
part, and the unstable eigenvalues with smallest real part.

Re(λ)

Im(λ)

(a) Saddle

Re(λ)

Im(λ)

(b) Saddle-focus

Re(λ)

Im(λ)

(c) Focus-focus

Figure 6.1: Configurations of leading eigenvalues λ (red). Gray area contains all non-
leading eigenvalues.

In µ 6.1, we see three configurations with simple leading eigenvalues, for which
a detailed description of the bifurcations occurring near the homoclinic orbit is
available (see, e.g. [326, 327, 328, 329]). For example, in the saddle case, a single
periodic orbit appears generically. In the saddle-focus case, we can assume that
the leading stable eigenvalues are complex by applying time-reversal if neces-
sary. In this case, infinitely many periodic orbits exist if the saddle quantity σ0,
defined as the sum of the real part of the leading unstable and stable eigenval-
ues, is positive. This phenomenon is called Shilnikov’s homoclinic chaos [330, 331].
On the contrary, if σ0 is negative, then generically only one periodic orbit ap-
pears. Thus, the sign of σ0 distinguishes wild and tame saddle-focus homoclinic
cases. Note that in the wild case many other bifurcations occur nearby, including
infinite sequences of fold (limit point, LP) and period-doubling (PD) bifurca-
tions of periodic orbits, as well as secondary homoclinic bifurcations, which
all accumulate on the primary homoclinic bifurcation manifold [332]. In the
focus-focus case, which will not be considered in this chapter, infinitely many
periodic orbits are always present.

Moving along the primary homoclinic manifold in the parameter space of (6.1),
one may encounter a transition from the saddle case (a) to the saddle-focus case
(b). This is a degenerate situation, and the corresponding homoclinic parameter
values form generically a codim 2 sub-manifold in the parameter space. Nearby
bifurcations should be studied using generic two-parameter families transverse
to this codim 2 sub-manifold. We can therefore restrict ourselves to generic
two-parameter ODEs (m = 2), where the primary homoclinic orbit exists along a
smooth homoclinic curve in the parameter plane, while the saddle to saddle-focus
transition happens at an isolated point on this curve. There are many more
codim 2 homoclinic bifurcations, see [333, 328, 329].

As already noted in [333], at the simplest saddle to saddle-focus transition we
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have either

(i) a double leading eigenvalue; or

(ii) three simple leading eigenvalues.

Re(λ)

Im(λ)

(a) α < 0

Re(λ)

Im(λ)

(b) α = 0

Re(λ)

Im(λ)

(c) α > 0

Figure 6.2: Eigenvalue configurations of the saddle to saddle-focus transition in case
(i); α is the parameter along the homoclinic curve and the bifurcation occurs at α = 0.
Arrows point in the direction of generic movement of eigenvalues. The green marker
indicates a double real eigenvalue. The gray areas contain non-leading eigenvalues,
leading eigenvalues are marked red and non-leading eigenvalues are marked black.

Re(λ)

Im(λ)

(a) α < 0

Re(λ)

Im(λ)

(b) α = 0

Re(λ)

Im(λ)

(c) α > 0

Figure 6.3: Eigenvalue configurations of the saddle to saddle-focus transition in case
(ii); the scalar bifurcation parameter along the homoclinic curve is α. Arrows point in
the direction of possible movement of eigenvalues. There is a codimension 2 situation
at α = 0, where the leading stable eigenspace becomes 3-dimensional. Non-leading
eigenvalues are contained in the gray area, leading eigenvalues are marked red and non-
leading eigenvalues are marked black.

In case (i), see µ 6.2, the pair of leading complex eigenvalues approaches the
real axis and splits into two distinct real eigenvalues. At the transition there
is a double real eigenvalue and the leading eigenspace is two-dimensional. In
case (ii), see µ 6.3, the real eigenvalue exchanges its position with the pair
of complex-conjugate eigenvalues. At the transition there are two complex-
conjugate eigenvalues and one real eigenvalue with the same real part. All
leading eigenvalues are simple and the leading eigenspace is 3-dimensional.

Case (i) is a saddle to saddle-focus homoclinic transition that appears in various
applications, e.g. in biophysics [334] and ecology [335]. Moreover, in these
applications the transition corresponds to the wild case with σ0 > 0. This
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case was first studied analytically by Belyakov [336], who proved that the
corresponding bifurcation diagram is complicated. We call this case the standard
Belyakov case. In [336, 335] a description of the main features of the universal
bifurcation diagram close to this transition for n = 3 in the wild case has been
obtained:

1. There exists an infinite set of limit point (LP) and period doubling (PD)
bifurcation curves.

2. There exists an infinite set of secondary homoclinic curves corresponding to
homoclinic orbits making two global excursions and various numbers of
local turns near the equilibrium.

3. Both sets have the same ‘bunch’ shape: The corresponding curves emanate
from the codim 2 point and accumulate onto the branch of primary saddle-
focus homoclinic orbits. The secondary homoclinics accumulate only from
one side.

Case (ii) has recently been observed in [186] for a 4D system of ODEs arising
from a study of traveling waves in a neural field model. We will revisit this
model in Section 6.6, only noting here that the transition in this model is tame
with σ0 < 0. As in the standard Belyakov case, we expect a complicated bifurc-
ation diagram in the wild case, i.e. when σ0 > 0.

Our chapter is devoted to the theoretical analysis of the homoclinic saddle to
saddle-focus transition for case (ii), when the leading stable eigenspace is three-
dimensional. We call this transition the 3DL-transition and mainly consider the
wild case. To the best of our knowledge, no systematic analysis of this case is
available in the literature, and it is one of a few remaining untreated codim
2 homoclinic bifurcations in ODEs, see [329] for a review. A possible reason
for this gap is that case (ii) can only occur in (6.1) with n ≥ 4, while case (i)
happens already in three-dimensional ODEs. This leads to the study of a three-
dimensional return map in case (ii), which is much more difficult to analyze
than the planar return map in the standard Belyakov case (i).

By considering a generic 4D system with the 3DL-transition, we are able to
obtain a two-parameter model 3D return map which describes the bifurcations
occurring close to the transition. We will see that in the wild case σ0 > 0, there
exist infinitely many bifurcation curves. However, the shape of these bifurcation
curves differs essentially from those in the standard Belyakov case (i):

1. There exist infinitely many PD, LP, torus (Neimark-Sacker, NS) and
secondary homoclinic curves. These curves accumulate onto the curve
of primary homoclinic orbits but do not emanate from the codim 2 point.

2. Each LP curve is a ‘horn’ composed of two branches. Close to the horn’s
tipping point LP and PD curves are organized via spring and saddle areas
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[337]. Transitions between saddle and spring areas are observed. Each
secondary homoclinic curve forms a ‘horizontal parabola’.

3. Several codim 2 points exist on each of the LP, PD, and NS curves. We
observe generalized period-doubling (GPD) and cusp (CP) points, as well
as strong resonances.

Using the model map, we prove analytically that the cusp points asymptotically
approach the wild 3DL transition point. The same is shown for the second-
ary homoclinic turning points. We present numerical evidence that all other
mentioned codimension 2 points form sequences also converging to the 3DL
transition point.

This chapter is organized as follows. In Section 6.2 we formulate the gener-
icity assumptions on (6.1) with n = 4 and m = 2. Next, we derive a model
3D return map and its 1D simplification. In Section 6.3 we analyze the 1D
model map to describe LP and PD bifurcations of the fixed points/periodic
orbits. An essential part of the analysis of the 1D map is carried out analyt-
ically, while that of the full 3D model map in Section 6.4 employs advanced
numerical continuation tools, except for the LP and PD bifurcations (reducible
to the 1D return map studied in Section 6.3) and the secondary homoclinic
bifurcations. In Section 6.5, implications for the dynamics of the original 4D
ODE system are summarized. Finally, in Section 6.6, we give explicit examples
of tame and wild 3DL-transitions in concrete models. The tame example is a
system that describes traveling waves in a neural field. The wild example is a
perturbed Lorenz-Stenflo model appearing in atmospheric studies. Various is-
sues, including generalization to higher dimensions, are discussed in Section 6.7.

6.2 Derivation of the model maps

6.2.1 Assumptions

We make the following assumptions about the 3DL-transition at the critical
parameter values, which we assume to be α1 = α2 = 0. Recall that we only
consider n = 4 and m = 2.

(A.1) The eigenvalues of the linearisation at the critical 3DL equilibrium
x = 0 are

δ0, δ0 ± iω0 and ǫ0,

where δ0 < 0, ω0 > 0 and ǫ0 > 0.

(A.2) There exists a homoclinic orbit Γ0 to this 3DL equilibrium, called the
primary homoclinic orbit.
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(A.3) The homoclinic orbit Γ0 does not exhibit an additional orbit-flip:
The normalized tangent vector to Γ0 has nonzero projections to both
the 1D eigenspace corresponding to the real eigenvalue δ0 and to the
2D eigenspace corresponding to the complex eigenvalues δ0 ± iω0, when
approaching the equilibrium.

Any system (6.1) with (n, m) = (4, 2) and satisfying the assumptions (A.1-

3), can be transformed near the critical equilibrium via a translation, a linear
transformation, a linear time scaling, and introducing new parameters µ =
(µ1, µ2), to

ẋ = Λ(µ)x + g(x, µ), x ∈ R
4, µ ∈ R

2, (6.2)

where

Λ(µ) =









γ(µ) −1 0 0
1 γ(µ) 0 0
0 0 γ(µ)− µ1 0
0 0 0 β(µ)









, (6.3)

and the smooth vector-valued function g(x, µ) vanishes together with its
derivative w.r.t. x at x = 0 for all µ ∈ R2 sufficiently small, and

γ(0) =
δ0
ω0

and β(0) =
ǫ0
ω0

. (6.4)

Define

ν(µ) := −γ(µ)

β(µ)
(6.5)

and let γ0 := γ(0) and β0 := β(0). The number

ν0 = ν(0) = −γ0

β0
= − δ0

ǫ0
(6.6)

is called the saddle index. Note that the saddle quantity σ0 introduced earlier is
related to the saddle index (6.6) as follows:

ν0 < 1 ⇐⇒ σ0 > 0,

ν0 > 1 ⇐⇒ σ0 < 0.

We assume from now on that ν0 < 1, so that only the wild case σ0 > 0 is
considered.

In system (6.2), µ2 = µ2(α) is a ‘splitting function’ so that the primary homo-
clinic orbit to the equilibrium (saddle, 3DL, saddle-focus) exists along the curve
µ2 = 0. The exact choice of µ2 will be clarified later. The value µ1(α) controls
which stable eigenvalue leads. For µ1 > 0, the stable leading eigenvalues are
complex (saddle-focus case) and for µ1 < 0 the stable leading eigenvalue is real
(saddle case).

Now we can formulate the final (transversality) assumption:
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(A.4) The components of µ = (µ1, µ2) are small and the 3DL saddle exists
at µ = 0. Moreover, the mapping α 7→ µ(α) is regular at α = 0, i.e. Dµ(0)
is nonsingular.

6.2.2 Introducing cross-sections

Our next aim is to derive the model Poincaré map close to Γ0 near the 3DL-
transition, that we will use for the two-parameter perturbation study.

Using the Ovsyannikov-Shilnikov Theorem [338, 328] (see also [339, 340, 341])
and a time reparametrization, we can conclude that (6.2) is smoothly orbitally
equivalent in a neighborhood of x = 0 to

{

u̇ = A(µ)u + f (u, v, µ)u,
v̇ = β(µ)v,

(6.7)

where u = (u1, u2, u3) ∈ R3, v ∈ R,

A(µ) =





γ(µ) −1 0
1 γ(µ) 0
0 0 γ(µ)− µ1



 , (6.8)

and, for all sufficiently small µ ∈ R2, the (3× 3)-matrix-valued function f van-
ishes at u1 = u2 = u3 = v = 0 and, moreover, f (u, 0, µ) = 0 for all u ∈ R3 with
sufficiently small ‖u‖, while f (0, v, µ) = 0 for all sufficiently small |v|. Note that
in general (6.7) is only Ck−2-smooth in (u, v, µ) even if the original system (6.2)
is Ck.

µ 6.4 gives an impression of the homoclinic connection to a 3DL-saddle in
the four-dimensional system (6.7). As we are interested in understanding the
bifurcations close to the homoclinic orbit, we define two Poincaré cross-sections,

Σs = {(u1, u2, u3, v)|u2 = 0} , (6.9)

Σu = {(u1, u2, u3, v)|v = du} , (6.10)

and assume that the homoclinic orbit passes through these cross-sections at
ys = (ds, 0, d̃s, 0) and yu = (0, 0, 0, du), respectively, for all parameter values
along the primary homoclinic curve, where ds, d̃s and du are sufficiently small
but positive. This is possible due to assumption (A.3), which also guarantees
that the primary homoclinic orbit does not exhibit an orbit-flip.

Clearly, both cross-sections are transversal to the flow and to the stable and
unstable eigenspaces. Thus, by following orbits starting from Σs to Σu and
returning back to Σs, we can define a three-dimensional map Π mapping (a
subset of) Σs to itself. We will use this map to study both periodic orbits and
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Eu

Σu
yu

Σs

ys

Es

Γ0

Πloc

Πglob

Figure 6.4: The choice of cross-sections close to the critical 3DL-saddle at (0, 0, 0, 0) and
the homoclinic connection Γ0, in order to obtain the map Π : Σs → Σs. Here Σu is
defined by the cross-section v = du and Σs is the cross-section u2 = 0. The homoclinic
connection is assumed to pass through the points ys = (ds, 0, d̃s, 0) and yu = (0, 0, 0, du).
The stable and unstable invariant manifolds locally coincide with the eigenspaces Es and
Eu, respectively.

secondary homoclinic orbits.

We shall construct the map Π by composing two maps, Πloc : Σs → Σu and
Πglob : Σu → Σs, i.e.

Π = Πglob ◦ Πloc. (6.11)

We want to construct a solution of (6.7) that starts at t = 0 from a point x0 ∈ Σs

close to ys and arrives at a point xτ ∈ Σu close to yu at some t = τ > 0. This
solution will be used to define the local map Πloc.

6.2.3 Derivation of the return map

Following the classical approach by L.P. Shilnikov [338, 328], consider the
integral equation on [0, τ]:











u(t) = eAtu0 +
∫ t

0
eA(t−s) f (u, v, µ)u(s)ds,

v(t) = e−β(τ−t)vτ ,
(6.12)

where τ > 0 is some constant. Let ǫ > 0 be sufficiently small, and let τ > 1/ǫ.
Given any (u0, vτ) ∈ R4 with ‖u0‖ + |vτ | < ǫ, a unique solution (u(t), v(t))
satisfying the above integral equation for t ∈ [0, τ] can be obtained by successive
approximations. The resulting solution x(t) = (u(t), v(t)) satisfies (6.7) with
u(0) = u0 and v(τ) = vτ , and depends (as smoothly as (6.7)) on τ, as well as on
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(u0, vτ) and µ (see [338, 329]).

This solution will be used to define the local map Πloc that sends x0 =
(xs

1, 0, xs
3, xs

4) ∈ Σs to a point xτ = (xu
1 , xu

2 , xu
3 , du) ∈ Σu, i.e. when u0 = (xs

1, 0, xs
3)

and vτ = du. We now write x∗(t) in a more explicit form.

First, by linearly scaling the phase variables, we transform (6.7) to



















































ẋ1 = γ(µ)x1 − x2 +
1

ds

3

∑
j=1

f1j(x̃, µ)x̃j,

ẋ2 = x1 + γ(µ)x2 +
1

ds

3

∑
j=1

f2j(x̃, µ)x̃j,

ẋ3 = (γ(µ)− µ1) x3 +
1

d̃s

3

∑
j=1

f3j(x̃, µ)x̃j,

ẋ4 = β(µ)x4,

(6.13)

where x̃ = (dsx1, dsx2, d̃sx3, dux4). Note that the homoclinic orbit now passes
through ys = (1, 0, 1, 0) and yu = (0, 0, 0, 1), since Σu is now characterized by
x4 = 1.

It follows from [338, 329] that the solution x(t) of (6.13) can be written for
sufficiently small ‖µ‖, as

x(t) =























xs
1eγ(µ)t

[

(1+ ϕ̃11) cos(t) + ϕ̃12 sin(t) + o
(

eγ(µ)t
)]

xs
1eγ(µ)t

[

(1+ ϕ̃21) sin(t) + ϕ̃22 cos(t) + o
(

eγ(µ)t
)]

xs
3e(γ(µ)−µ1)t

[

1+ ϕ̃31 + o(eγ(µ)t)
]

e−β(µ)(τ−t)























. (6.14)

The functions ϕ̃ij are smooth functions of (t, x0, µ, ds, d̃s, du) and satisfy
ϕ̃ij = O(d), where d = min{ds, d̃s, du}. In general, these functions and the
o-terms are only Ck−2-smooth when the scaled system (6.13) is Ck [340, 341].

Evaluating x(t) at t = τ, where

τ = − 1

β
ln(xs

4), (6.15)
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we get the local map Πloc,

Πloc :















xs
1

xs
3

xs
4















7→















xs
1(xs

4)
ν(µ) [(1+ ϕ11) cos(τ) + ϕ12 sin(τ) + o ((xs

4)
ν)]

xs
1(xs

4)
ν(µ) [(1+ ϕ21) sin(τ) + ϕ22 cos(τ) + o ((xs

4)
ν)]

xs
3(xs

4)
ν(µ)+µ1/β(µ) [1+ ϕ31 + o ((xs

4)
ν)]















,

(6.16)

where ν(µ) is defined by (6.5) and ϕij are smooth functions of (xs
1, xs

3, xs
4, µ).

For the global return map Πglob : Σu 7→ Σs, we use a general smooth ap-
proximation of the flow of (6.13) from (0, 0, 0, 1) to (1, 0, 1, µ2). Here µ2 is the
aforementioned splitting parameter. It controls the return of the orbit to the
critical saddle. For µ2 = 0 only, we have a primary homoclinic connection.

Thus, the following representation of Πglob can be used

Πglob :















xu
1

xu
2

xu
3















7→















1

1

µ2















+















a11(µ) a12(µ) a13(µ)

a21(µ) a22(µ) a23(µ)

a31(µ) a32(µ) a33(µ)





























xu
1

xu
2

xu
3















+O(‖xu‖2),

(6.17)
where xu = (xu

1 , xu
2 , xu

3). For A0 = [aij(0)], we also have det(A0) 6= 0 which
follows from the invertibility of Πglob for µ small enough.

Equations (6.16) and (6.17) together give us the full return map Π = Πglob ◦Πloc.
Keeping the dependence of all coefficients on µ implicit, we can write Π as

Π :















xs
1

xs
3

xs
4















7→















1+ b1xs
1(xs

4)
ν cos

(

− 1
β ln xs

4 + θ1

)

+ b2xs
3(xs

4)
ν+µ1/β

1+ b3xs
1(xs

4)
ν sin

(

− 1
β ln xs

4 + θ2

)

+ b4xs
3(xs

4)
ν+µ1/β

µ2 + b5xs
1(xs

4)
ν sin

(

− 1
β ln xs

4 + θ3

)

+ b6xs
3(xs

4)
ν+µ1/β















+ o(‖xs‖ν),

(6.18)
where xs = (xs

1, xs
3, xs

4) and

sin θ1 = − a12
√

a211 + a212

, cos θ2 =
a22

√

a221 + a222

, cos θ3 =
a32

√

a231 + a232

,

b1 =
√

a211 + a212, b3 =
√

a221 + a222, b5 =
√

a231 + a232,

b2 = a13, b4 = a23, and b6 = a33.

(6.19)
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Following [332], we make the smooth invertible transformation xs
4 7→

xs
4 exp (θ3β) to eliminate θ3. This gives

Π :















x1

x3

x4















7→















1+ α1x1xν
4 cos

(

− 1
β ln x4 + φ1

)

+ α2x3x
ν+µ1/β
4

1+ α3x1xν
4 sin

(

− 1
β ln x4 + φ2

)

+ α4x3x
ν+µ1/β
4

µ2 + C1x1xν
4 sin

(

− 1
β ln x4

)

+ C2x3x
ν+µ1/β
4















+ o(‖x‖ν),

(6.20)
where we have dropped the superscript ‘s’ from the coordinates of x =
(x1, x3, x4) for convenience, and where

φ1 = θ1 − θ3, φ2 = θ2 − θ3,
α1 = b1 exp(θ3βν), α2 = b2 exp((ν + µ1/β)θ3β),
α3 = b3 exp(θ3βν), α4 = b4 exp((ν + µ1/β)θ3β),
C1 = b5 exp(θ3βν), C2 = b2 exp((ν + µ1/β)θ3β).

(6.21)

Observe that αj and Ck depend on µ and that C1 > 0. Let us denote by α0j and

C0
j their critical values at µ = 0.

Truncating the o(‖x‖ν)-terms in (6.20) and taking only the critical values of all
coefficients, we define

G(x, µ) :=











1+ α01x1xν0
4 cos

(

− 1
β0

ln x4 + φ0
1

)

+ α02x3x
ν0+µ1/β0

4

1+ α03x1xν0
4 sin

(

− 1
β0

ln x4 + φ0
2

)

+ α04x3x
ν0+µ1/β0

4

µ2 + C0
1x1xν0

4 sin
(

− 1
β0

ln x4

)

+ C0
2x3x

ν0+µ1/β0

4











. (6.22)

This map G is the final form of the 3D model return map that we will use for the
numerical analysis ahead.

Now, to analyze periodic orbits close to the homoclinic connection with respect
to the critical 3DL-saddle, we look for fixed points of the map Π given by (6.20).
These fixed points correspond to periodic orbits in the original ODE system.
Bifurcations of these fixed points describe the various local bifurcations of the
corresponding periodic orbits.

The fixed point condition for map (6.20) is














x1

x3

x4















=















1+ α1x1xν
4 cos

(

− 1
β ln x4 + φ1

)

+ α2x3x
ν+µ1/β
4

1+ α3x1xν
4 sin

(

− 1
β ln x4 + φ2

)

+ α4x3x
ν+µ1/β
4

µ2 + C1x1xν
4 sin

(

− 1
β ln x4

)

+ C2x3x
ν+µ1/β
4















+ o(‖x‖ν),

(6.23)
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where all constants αj and Ck still depend on µ. For non-degeneracy, we require
that real constants C1 and C2 are nonzero. We justify this later. The coefficients
C1 and C2 play the role of separatrix values (see [328]).

From (6.23), we get, using the Implicit Function Theorem, the following
expressions for x1 and x3:

x1 = 1+ α1xν
4 cos

(

− 1
β ln x4 + φ1

)

+ α2x
ν+µ1/β
4 + o(|x4|ν),

x3 = 1+ α3xν
4 sin

(

− 1
β ln x4 + φ2

)

+ α4x
ν+µ1/β
4 + o(|x4|ν),

which gives the condition for x4

x4 = µ2 + C1xν
4 sin

(

− 1

β
ln x4

)

+ C2x
ν+µ1/β
4 + o(|x4|ν), (6.24)

as a one-dimensional fixed point condition. As we are interested in the behavior
close to (1, 0, 1, 0) on the cross-section Σs, we consider only the leading terms of
(6.24) and introduce the following scalar model map:

x 7→ F(x, µ) := µ2 + C0
1xν0 sin

(

− 1

β0
ln x

)

+ C0
2xν0+µ1/β0 . (6.25)

The extra additive term C0
2xν0+µ1/β0 is what makes this map different from the

scalar model maps describing the codim 1 saddle-focus case.

If we were to set C0
1 to zero, then we get the saddle case, where we obtain finitely

many fixed points for all values of ν0, µ1, β0, µ2 and C0
2 . If we set C0

2 to zero, we
get the codim 1 saddle-focus case.

Thus we assume

(A.5) The homoclinic orbit Γ0 does not exhibit an additional inclination-
flip:

C0
1C0

2 6= 0.

6.3 Analysis of the scalar model map

In this section, we study bifurcations of fixed points of the map (6.26). To stay
close to the 3DL-bifurcation, we only work with small values of x and µ. To
simplify notations, we rewrite the scalar model map (6.25) as

x 7→ F(x, µ) := µ2 + C1xν sin
(

− 1

β
ln x

)

+ C2xν+µ1/β, (6.26)

assuming that ν, β, and C1,2 are fixed at their critical values.
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Figure 6.5: Primary LP and PD bifurcation curves obtained by numerical continuation, for
the map (6.26) for some representative values of C1 and C2. We fix β = 0.2 and ν = 0.5.
In panel (A) we plot 4 pairs of these curves. All of them have the same global structure.
There are two types of codimension 2 points that can be found along these curves: Cusp
(on LP curves) and GPD (along PD curves). In panel (B) we see what happens when we
switch the sign of C2, the horns move from µ2 > 0 to µ2 < 0. In panel (C) and (D) we
see examples of one PD and LP curve with the saddle area and spring area respectively
(zoomed in). In the insets, µ2 is scaled for visualization.
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6.3.1 Numerical continuation results

Using the continuation package MatcontM [342, 343], we obtained many LP
and PD bifurcation curves, which form interesting structures. There is strong
evidence that there exist infinitely many PD and LP curves in the (µ1, µ2)-
parameter space. Several such curves can be seen in µ 6.5. We make the
following observations:

1. The curves exhibit a repetitive behavior: two branches of one LP curve
meet to form a horn. The sequence of these ‘horns’ in the parameter space
appears to approach the half-axis µ2 = 0(µ1 > 0) asymptotically, which
is the curve of primary homoclinic orbits. Also, the tips of the ‘horns’
are always located entirely in either the second, or third quadrant of the
(µ1, µ2)-space.

2. The PD and LP curves appear to coincide on visual inspection, and there
can exist GPD points in the vicinity of the tip of the LP horn.

3. The tip of each LP ‘horn’ is a cusp point. These cusps always exist, for
all values of C1 and C2 and form a sequence that appears to approach the
origin µ = 0.

4. Upon closer inspection, we observe that there exists either of the two subtle
structures near the top of every LP ‘horn’. One is a spring area, where the
PD curve loops around the cusp point. The other is a saddle area, where the
PD curve makes a sharp turn close to the cusp, see the insets in µ 6.5. The
spring area is accompanied by two GPD points along the PD loop. These
points are absent in a saddle area. Mira et al. [337] discuss in detail the
spring and saddle areas, including transitions from one case to the other
and their genericity.

5. The global behavior of this set of curves depends on parameters C1 and C2.
For example, by switching the sign of C2, the set of curves can be moved
from the second to the third quadrant of the µ-space, or vice-versa. The
presence of saddle or spring areas depend on the parameters C1 and C2,
but the exact conditions are not clear.

In the sections ahead, we support most of the observations by analytical
asymptotics of the LP and PD bifurcation curves of (6.26).

6.3.2 Asymptotics

In this section we derive approximate solutions to the LP and PD conditions,
and use them to justify numerical observations. As we are interested in solutions
close to the 3DL bifurcation point (µ1, µ2) = (0, 0) we assume that x, µ1 and µ2

are sufficiently small. As we investigate only the wild case we restrict ourselves
to ν < 1.
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LP horns and cusp points

For the scalar model map (6.26) the fixed point condition is given by

µ2 + C1xν sin
(

− 1

β
ln x

)

+ C2xν+µ1/β − x = 0. (6.27)

Notice that x is a higher-order term compared to xν and xν+µ1/β for sufficiently
small µ1. Therefore, studying fixed points is asymptotically equivalent to
studying zeros of F(x, µ). We introduce α := min(1, 2ν) and parametrize x
using the following relation,

− 1

β
ln x = 2πn + θ, (6.28)

for large n ∈ N and θ ∈ (0, 2π). Thus, (6.27) becomes

µ2 + C1e−βν(2πn+θ) sin θ + C2e−β(ν+µ1/β)(2πn+θ) + O(e−αβ(2πn+θ)) = 0. (6.29)

Let us define

Φ(θ, µ1, µ2) := µ2 + C1e−βν(2πn+θ) sin θ + C2e−β(ν+µ1/β)(2πn+θ). (6.30)

Then
Φθ(θ, µ1, µ2) = 0,

is the extra condition for an asymptotic LP point. Computing the derivative, we
get

C1 (βν sin θ − cos θ) + C2(βν + µ1)e
−µ1(2πn+θ) = 0. (6.31)

We now simultaneously solve (6.27) and (6.31) to obtain a sequence of

functions µ
(n)
2 (µ1) which describe the sequence of LP ‘horns’ already observed

numerically. Thus, rewriting (6.31), we have

βν sin θ − cos θ = −C2

C1
(βν + µ1) e−µ1(2πn+θ)

= −C2

C1
(βν + µ1) e−2πµ1n

[

1− µ1θ + O(µ2
1)
]

= −C2

C1
e−2πµ1n

[

βν − (1− βνθ)µ1 + O(µ2
1)
]

.
(6.32)

Collecting trigonometric terms on the left we get

sin(θ − φ) = − 1
√

1+ β2ν2
C2

C1
e−2πµ1n

[

βν − (1− βνθ)µ1 + O(µ2
1)
]

, (6.33)

where sin φ = (1 + β2ν2)−1/2 and φ ∈ (0, π/2). Note that for large n and
negative µ1, the corresponding solution θ exists only for small |µ1|. Let

θn
0 := arcsin

(

− βν
√

1+ β2ν2
C2

C1
e−2πµ1n

)

. (6.34)
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Then we have two solutions,

θ1 = φ + θn
0 + 2πδi1 + O(µ1),

θ2 = φ + π − θn
0 + O(µ1),

(6.35)

where i = −sign(C2) and δij is the Kronecker delta.

For each n, we obtain two solutions θ = θ1,2 given by (6.35). The corresponding

functions µ
(n)
2 (µ1) follow from (6.29),

{

µ
(n,1)
2 (µ1) = −C1e−βν(2πn+θ1) sin θ1 − C2e−β(ν+µ1/β)(2πn+θ1),

µ
(n,2)
2 (µ1) = −C1e−βν(2πn+θ2) sin θ2 − C2e−β(ν+µ1/β)(2πn+θ2).

(6.36)

On expanding sin θ1 and sin θ2 we get the expressions for two LP-branches
forming the n-th ‘horn’














































µ
(n,1)
2 (µ1) = −e−βν(θn

0
+φ+2πδi1) e−2πβνn√

1+β2ν2

[

C1

(

1− β2ν2

1+β2ν2
C2
2

C2
1

e−4πµ1n
)1/2

+ C2√
1+β2ν2

e−µ1(2πn+2πδi1+θn
0
+φ) + O(µ1)

]

,

µ
(n,2)
2 (µ1) = −e−βν(π−θn

0
+φ) e−2πβνn√

1+β2ν2

[

−C1

(

1− β2ν2

1+β2ν2
C2
2

C2
1

e−4πµ1n
)1/2

+ C2√
1+β2ν2

e−µ1(2πn+π−θn
0
+φ) + O(µ1)

]

.

(6.37)
Upon setting µ

(n,j)
2 to zero, we get a sequence µ

(n)
1

∣

∣

∣

µ2=0
of intersections of one

of these branches with the axis µ2 = 0. Thus asymptotically

µ
(n)
1

∣

∣

∣

µ2=0
=

1

4πn

[

ln
(

C2
2

C2
1

)

+ O

(

1

n

)]

. (6.38)

For genericity of the LP, we further require that the second derivative Φθθ 6= 0.
Thus, the condition

Φθθ = 0,

determines a cusp point. We solve the following three conditions together







Φ(θ, µ1, µ2) = 0,
Φθ(θ, µ1, µ2) = 0,
Φθθ(θ, µ1, µ2) = 0.

(6.39)

Taking derivative with respect to θ in (6.33) gives the third equation of (6.39),

cos(θ − φ) +
1

√

1+ β2ν2
C2

C1
e−2πµ1n

[

βνµ1 + O(µ2
1)
]

= 0. (6.40)
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Using (6.33) and (6.40) we get

1

(1+ β2ν2)

C2
2

C2
1

e−4πµ1n
[

β2ν2 + O(µ1)
]

= 1, (6.41)

which gives the value of µ1 at the cusp point,

µn
1 =

1

4πn

[

ln
(

β2ν2

(1+ β2ν2)

C2
2

C2
1

)

+ O

(

1

n

)]

. (6.42)

The corresponding value of µ2 is obtained from (6.29). We get,

µn
2 = −e−βν(2πn+θ0+φ) sign(C2)C1

βν
√

1+ β2ν2
a−(θ0+φ)/4πn + O

(

1√
n

)

, (6.43)

where θ0 is the value of θn
0 at the cusp point, that is

θ0 =

{

π/2, if C2 < 0,
3π/2, if C2 > 0,

(6.44)

and

a =
β2ν2

1+ β2ν2
C2
2

C2
1

. (6.45)

Clearly, this cusp point is precisely where the two branches of a horn from (6.36)
meet, i.e. when

sin2 θn
0 = 1.

PD curves

The formulas derived to describe the LP-‘horns’ also describe PD bifurcation
curves away from the cusp points. Indeed, the asymptotic conditions for PD
curves are

{

Φ(θ, µ1, µ2) = 0,
Φθ(θ, µ1, µ2) = 0,

(6.46)

which gives the same expressions (6.35) and (6.36) to describe PD curves.

6.3.3 Summarizing lemma for 1D model map

We summarize our findings in the following lemma.

Lemma 6.3.1. In a neighborhood of the origin of the (µ1, µ2)-plane, the scalar model

map (6.25) has an infinite number of fold curves for fixed points LP
(1)
n , n ∈ N, accu-

mulating to the half axis µ2 = 0 with µ1 ≥ 0.
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Each curve resembles a ‘horn’ with the following asymptotic representation of its two
branches:














































µ
(n,1)
2 (µ1) = −e−β0ν0(θ

n
0
+φ0+2πδi1) e−2πβ0ν0n√

1+β2
0

ν2
0

[

C0
1

(

1− β2
0

ν2
0

1+β2
0

ν2
0

(C0
2
)2

(C0
1
)2

e−4πµ1n
)1/2

+
C0
2√

1+β2
0

ν2
0

e−µ1(2πn+2πδi1+θn
0
+φ0) + O(µ1)

]

,

µ
(n,2)
2 (µ1) = −e−β0ν0(π−θn

0
+φ0) e−2πβ0ν0n√

1+β2
0

ν2
0

[

−C0
1

(

1− β2
0

ν2
0

1+β2
0

ν2
0

(C0
2
)2

(C0
1
)2

e−4πµ1n
)1/2

+
C0
2√

1+β2
0

ν2
0

e−µ1(2πn+π−θn
0
+φ0) + O(µ1)

]

.

(6.47)
where

φ0 := arcsin
(

1√
1+β2

0
ν2
0

)

, θn
0 := arcsin

(

− β0ν0√
1+β2

0
ν2
0

C0
2

C0
1

e−2πµ1n

)

,

and δij is the Kronecker delta where i = −sign(C0
2).

The branches of each LP
(1)
n curve meet at a cusp point CP

(1)
n with the following

asymptotic representation:

CP
(1)
n =







µn
1

µn
2






=









1
4πn

[

ln(a) + O
(

1
n

)]

−e−β0ν0(2πn+θ0+φ0) sign(C0
2
)C0

1

β0ν0
√

1+β2
0

ν2
0

a−(θ0+φ0)/4πn + O
(

1√
n

)









,

(6.48)
where

θ0 :=
{

π/2, if C0
2 < 0,

3π/2, if C0
2 > 0,

and

a :=
β20ν20

1+ β20ν20

(C0
2)

2

(C0
1)

2
.

Moreover, there exists an infinite number of period-doubling curves PD
(1)
n , n ∈ N,

which have – away from the cusp points CP
(1)
n – the same asymptotic representation

as the fold bifurcation curves LP
(1)
n . Depending on (C0

1 , C0
2), the period-doubling

curves could either be smooth or have self-intersections developing small loops around
the corresponding cusp points.

Figure 6.6 illustrates Lemma 6.3.1 by comparing the leading terms of the
asymptotic expressions for LP curves with actual LP curves of the 1D model
map (6.25) obtained by accurate numerical continuation.
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Figure 6.6: Plots of the truncated asymptotic curves and actual PD/LP curves obtained
by numerical continuation. We fix β = 0.2 and ν = 0.5. In (A) we see how successive
asymptotic curves, indexed by n, approximate the set of PD/LP curves. Here, cusps are
obtained by performing Newton iterations to the defining system of the cusp bifurcation
with starting points as the asymptotic cusps. In (B), convergence of the asymptotic
cusps to the actual cusps is observed. The corresponding values of n in both plots are
n = 10, 11, ...90.
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6.4 Analysing the 3D model map

In this section we study the original 3D model map (6.22) that we restate here
for convenience

G :





x1
x2
x4



 7→











1+ α1x1xν
4 cos

(

− 1
β ln x4 + φ1

)

+ α2x2x
ν+µ1/β
4

1+ α3x1xν
4 sin

(

− 1
β ln x4 + φ2

)

+ α4x2x
ν+µ1/β
4

µ2 + C1x1xν
4 sin

(

− 1
β ln x4

)

+ C2x2x
ν+µ1/β
4











. (6.49)

The analysis of fixed points of (6.49) leads to the same equation (6.24) for the x4

coordinate. Thus, all conclusions about the existence and asymptotics of LP
(1)
n

and PD
(1)
n curves, as well as CP

(1)
n points in Lemma 6.3.1, remain valid. Indeed,

taking into account the O(|x|2ν)-term does not alter the leading terms in any
expression.

6.4.1 Results of numerical continuation

We look for fixed points of map (6.49) and their various codim 1 curves. The
results are similar to that of the scalar model map, except for higher dimensional
codim 2 points that exist only in the 3D model map. In µ 6.7, we show the
PD and LP curves obtained via numerical continuation in µ for a fixed set of
parameters:

ν = 0.5, β = 0.2, C1 = 0.8, C2 = 1.2, α1 = 0.8,

α2 = 1.3, α3 = 0.6, α4 = 1.1, φ1 = φ2 = π/6. (6.50)

We immediately see similarities with the scalar case. The global structure
of these curves is the same as in the scalar case. They form sequences that
accumulate onto the primary homoclinic curve asymptotically. The LP ‘horns’
have cusp points and are accompanied by PD curves with/without GPD points
(depending on saddle or spring area). All this is expected as the scalar map is a
correct asymptotic representation of the 3D model map.

There are however three main differences with respect to the scalar model map
which can be attributed to the higher dimension of the 3D map:

1. Spring and saddle areas may occur differently for the 1D and 3D model
maps for the same parameter values.

2. Between the PD and LP curves, there exist NS curves. The end points of
each NS segment are strong resonance points.

3. Along the PD, LP and NS curves we observe many higher dimensional
codimension 2 points. These points are R1 (resonance 1:1), R2 (resonance
1:2), LPPD (Fold-Flip), R3 (resonance 1:3), R4 (resonance 1:4).
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Figure 6.7: Primary LP (solid red) and PD (dashed blue) curves obtained by numerical
continuation for the map (6.49) with parameters (6.50). The curves have almost the
same global structure as for the 1D map, as can be seen in (A). In (B) one such curve
is presented, together with several codim 2 points found along it. In Inset (1) we see
the previously described spring area made up by the PD and LP curves. Three codim
2 bifurcation points are observed, two corresponding to the generalised period doubling
(GPD) bifurcation and one corresponding to the Cusp bifurcation. In Inset (2) we see the
interaction between the 1:2 resonance (R2) point on the PD curve and the 1:1 resonance
point (R1) on the LP curve, via the primary NS curve (solid black). On this curve we find
two more codimension 2 bifurcation points: 1:3 resonance (R3) and 1:4 resonance (R4).
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These points appear to numerically approach the origin µ = 0 (3DL transition).
The endpoints of the NS curve are points R1 and R2, as can be seen in µ 6.7 (B).
For a detailed discussion on the various codimension 2 points and their local
bifurcation diagrams, see [4].

We did not see a significant difference in behavior of the PD/LP curves upon
changing the coefficients αi and φj. This can be attributed to the effect of the
corresponding terms in (6.49) to the dynamics of x4. These terms are O(‖x‖2ν)
in the fixed point equation for x4.

In Table 6.1 we present sequences of some of the codimension 2 points found on
successive PD/LP curves of µ 6.7. These sequences are obtained via detection
along PD/LP curves from continuation. GPD and CP points are not reported as
they are generally hard to detect along continuations, due to large test function
values and absolute gradients. GPD’s are approximated in practice by noting
where the sign of the corresponding test function changes. Note that codimen-
sion 2 points such as R1, R2 and LPPD were observed more than once on a
single PD/LP curve. In Table 6.1 we show only one point per curve for each of
the different bifurcation points.

LPPD (1) R1 (1) R2 (2)

µ1 µ2 µ1 µ2 µ1 µ2

5.9 · 10−3 −2.45 · 10−4 −9.9 · 10−3 −5.16 · 10−3 −4.02 · 10−2 −4.23 · 10−2

5.31 · 10−3 −1.38 · 10−4 −8.83 · 10−3 −2.74 · 10−3 −3.47 · 10−2 −2·10−2

4.39 · 10−3 −4.14 · 10−5 −7.27 · 10−3 −7.74 · 10−4 −2.74 · 10−2 −5.03 · 10−3

3.74 · 10−3 −1.21 · 10−5 −6.18 · 10−3 −2.19 · 10−4 −2.27 · 10−2 −1.34 · 10−3

3.25 · 10−3 −3.51 · 10−6 −5.38 · 10−3 −6.22 · 10−5 −1.95 · 10−2 −3.64 · 10−4

3.05 · 10−3 −1.89 · 10−6 −5.05 · 10−3 −3.31 · 10−5 −1.82 · 10−2 −1.91 · 10−4

2.88 · 10−3 −1.01 · 10−6 −4.76 · 10−3 −1.77 · 10−5 −1.6 · 10−2 −5.29 · 10−5

2.72 · 10−3 −5.44 · 10−7 −4.5 · 10−3 −9.41 · 10−6 −1.52 · 10−2 −2.79 · 10−5

2.34 · 10−3 −8.37 · 10−8 −3.87 · 10−3 −1.43 · 10−6 −1.36 · 10−2 −7.8 · 10−6

Table 6.1: Cascades of codimension two points numerically obtained during continuation
of limit point/period-doubling solutions of the 3D map (6.49). Other parameter values
are as in µ 6.7.

For the scalar map we observed that transitions exist between spring and saddle
areas. These transitions can be explained by observing the appearance and
disappearance of GPD points, as they exist generically on the PD loop in a
spring area, and do not exist in the case of a saddle area. In the 3D case too, we
numerically observe such transitions. However, when there is a spring (saddle)
area in the 3D case, it does not imply that the same structure would exist in the
1D map for the same choice of parameters C1 and C2. This is shown in µ 6.8.
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Figure 6.8: Plots of spring and saddle areas in the scalar map (6.26) and 3D map (6.22).
We fix ν = 0.5, β = 0.2, α1 = 0.8, α2 = 1.3, α3 = 0.6, α4 = 1.1 and φ1 = φ2 = π/6.In all
plots µ2 is scaled for convenience. In (A) we see that there exists a saddle area in the 3D
case, where GPD points are absent. (B) and (C) are plotted for the same value of C1 and
C2, but with respect to the 3D map (6.22) and 1D map (6.26) respectively. We see that the
existence of the spring area in the 3D map does not imply the existence of the same in
the 1D map. Other parameters fixed as in Figure 6.7.

6.4.2 Secondary homoclinic orbits

In this section we analyze a particular type of homoclinic orbits, i.e. secondary
homoclinic orbits which – after leaving the saddle along the unstable manifold
– make two global excursions before returning to the saddle.

We look at the existence of these homoclinic orbits close to the primary homo-
clinic orbit in (6.2), upon perturbing parameters µ1 and µ2. The existence of the
orbits is a codim 1 situation and corresponds to a curve in the (µ1, µ2)-plane.
As before, we look for these curves in the wild case, where ν < 1. In the tame
case ν > 1, they do not exist.

Consider µ 6.9. The secondary homoclinic orbit Γ1 in the scaled ODE (6.13)
leaves the point yu = (0, 0, 0, 1) ∈ Σu, along the unstable manifold and crosses
Σs at x = (xs

1, 0, xs
3, µ2). From this point, the orbit departs again and this time

returns along the stable manifold, thus approaching the origin. The orbit crosses
then Σs at ys = (1, 0, 1, 0). Using the 3D model map G defined by (6.49), the
condition is

G





1
1
µ2



 =





1
1
0



 , (6.51)

which implies

µ2 + C1µν
2 sin

(

− 1

β
ln µ2

)

+ C2µ
ν+µ1/β
2 = 0. (6.52)
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Σu yu

Σs

ys

Γ1

Figure 6.9: Poincaré map for the secondary homoclinic solution Γ1. Upon leaving yu

along the unstable manifold, the corresponding orbit makes two global excursions and
returns to the origin.

Let us define

H(µ) := µ2 + C1µν
2 sin

(

− 1

β
ln µ2

)

+ C2µ
ν+µ1/β
2 . (6.53)

Note that here µ2 must be positive. The shape of H(µ) = 0 is similar to the curve
F(x, µ) = 0 (from (6.26)). For positive µ1, it is possible to obtain infinitely many
solutions of (6.52) for µ2 sufficiently small. That is not the case when µ1 < 0, as
there are only finitely many or no non-trivial solutions for µ2 sufficiently small.

In µ 6.10 the non-trivial solutions are continued with respect to the parameters
µ1 and µ2 for two different sets of values of C1 and C2. We observe three things:

1. There are secondary homoclinic curves which form horizontal parabolas
and these ‘parabolas’ approach the primary homoclinic curve µ2 = 0
asymptotically.

2. These ‘parabolas’ possess turning points where the two upper and lower
secondary homoclinic branches merge. The sequence of turning points
obtained from successive ‘parabolas’ appears to approach the origin
asymptotically.

3. For different values of C1 and C2, the sequence of turning points is located
strictly either in the first or second quadrant.

6.4.3 Asymptotics of secondary homoclinics

The observations above can be explained to some extent by asymptotic expres-
sions for the parabolas and the corresponding turning points.
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Figure 6.10: Solutions of (6.52) in (µ1, µ2)-space. We fix β = 0.2 and ν = 0.5. In (A),
‘parabolas’ are obtained via continuation in Matcontb, for two sets of parameter values.
The turning points (in black) are computed with high accuracy by Netwon iterations.
In (B), the computed curves are plotted together with asymptotic curves defined by the
leading terms in (6.66). In (C), we plot relative norm differences between asymptotic and
numerically computed turning points.
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Noticing µ2 > 0, let

− 1

β
ln µ2 = 2πm + θ, (6.54)

for large m ∈ N and θ ∈ (0, 2π). On dividing both sides by µν
2 6= 0 and using

the above parametrization for µ2, (6.52) becomes

e−β(1−ν)(2πm+θ) + C1 sin θ + C2e−µ1(2πm+θ) = 0. (6.55)

On simplifying, we get

sin θ = −C2

C1
e−2πµ1m(1− µ1θ + O(µ2

1)) + O(e−αm), (6.56)

where α = 2πβ(1− ν). For large m and negative µ1, a solution θ exists only for
small |µ1|. Thus we get two solutions θ from (6.56),

θ1 = θm
0 + 2πδi1 + O(1/m),

θ2 = π − θm
0 + O(1/m),

(6.57)

where

θm
0 := arcsin

(

−C2

C1
e−2πµ1m

)

,

the index i = −sign(C2) and δij is the Kronecker delta. Thus the expressions for
two ‘half-parabolas’ are

{

µ
(m,1)
2 = e−β(2πm+θm

0
+2πδi1(1+ O(1/m)),

µ
(m,2)
2 = e−β(2πm+π−θm

0
)(1+ O(1/m)).

(6.58)

Taking derivative with respect to θ in (6.56) gives

cos θ =
C2

C1
e−2πµ1m(µ1 + O(µ2

1)) + O(e−αm). (6.59)

Solving (6.56) and (6.59) together gives the condition for turning points. Using
the two conditions gives,

C2
2

C2
1

e−4πµ1m(1+ O(µ1)) + O(e−αm) = 1. (6.60)

From this we get µ1,

µ1 =
1

4πm

[

ln
(

C2
2

C2
1

)

+ O

(

1

m

)]

, (6.61)
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which also follows from the condition

sin2 θ = 1. (6.62)

Thus the sequence of turning points is given by

(

µ
(m)
1

µ
(m)
2

)

=





1
(4πm)
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(
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2

C2
1

)

+ O
(

1
m

)

)

e−β(2πm+θ0)
(

1+ O
(

1
m

))



 , (6.63)

where

θ0 =

{

π/2, if C2 < 0,
3π/2, if C2 > 0.

(6.64)

We summarize the results in the following lemma.

Lemma 6.4.1. For the 3D model map G defined by (6.22), the condition

G





1
1
µ2



 =





1
1
0



 (6.65)

defines in a neighbourhood of the origin of the (µ1, µ2)-plane, an infinite sequence of

‘parabolas’ Hom
(2)
m , m ∈ N, that accumulate onto the half axis µ2 = 0 with µ1 ≥ 0.

Each parabola is formed by two branches with the following asymptotic representation:

{

µ
(m,1)
2 = e−β0(2πm+θm

0
+2πδi1

(

1+ O
(

1
m

))

,

µ
(m,2)
2 = e−β0(2πm+π−θm

0
)
(

1+ O
(

1
m

))

,
(6.66)

where

θm
0 := arcsin

(

−C0
2

C0
1

e−2πµ1m

)

.

These branches meet at a sequence of turning points T
(2)
m , which converges to the origin

of the (µ1, µ2)-plane and is given by

T
(2)
m =

(

µ
(m)
1

µ
(m)
2
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=
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1
(4πm)
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2
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1
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]

+ O
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1
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)

)

e−β0(πm+θ0)
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1+ O
(

1
m

))

)

, (6.67)

where

θ0 =

{

π/2, if C2 < 0,
3π/2, if C2 > 0.

(6.68)
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6.5 Interpretation for the original ODE system

Let us consider the original 4D system (6.2) in the linearizing coordinates near
the equilibrium, the geometric construction in Figure 6.4 and the full 3D map Π

defined by (6.20).

Fixed points of this map Π in Σs correspond to periodic orbits, thus period-
doubling and fold bifurcations of these fixed points of this map correspond to
the same bifurcations of periodic orbits in the original ODE system.

The second iterate of the map (6.20), for µ2 > 0, defines an orbit in the original
system (6.2) which makes an extra global excursion before returning to Σu.
Starting at a point in the unstable 1D manifold of the equilibrium and letting the
third component of the image go to zero, implies that we consider an orbit of
the ODE that departs along the unstable manifold and returns along the stable
manifold back to the saddle. This orbit is therefore a secondary homoclinic orbit
near the primary one.

Using Lemmas 6.3.1 and 6.4.1 we are now able to formulate our main results
in terms of the original 4D ODE near the wild 3DL-homoclinic transition. It
follows from the fact that taking into account the o(‖x‖ν)-term in (6.20) does not
alter the leading terms in all expressions, which further implies that the given
asymptotics are the same for the truncated map (6.49) and full 3D return map
(6.20).

Theorem 6.5.1. Consider a smooth 4D ODE system depending on two parameters

ẋ = f (x, α), x ∈ R
4, α ∈ R

2. (6.69)

Suppose that at α = 0 the system (6.69) satisfies the following assumptions:

(A.1) The eigenvalues of the linearisation at the critical 3DL equilibrium x = 0
are

δ0, δ0 ± iω0 and ǫ0,

where δ0 < 0, ω0 > 0, ǫ0 > 0 and σ0 = δ0 + ǫ0 > 0.

(A.2) There exists a primary homoclinic orbit Γ0 to this 3DL equilibrium.

Then, in addition to the primary homoclinic curve Hom(1), the bifurcation set of (6.69)
in a neighborhood of α = 0 generically contains the following elements:

(i) An infinite number of fold bifurcation curves LP
(1)
n , n ∈ N, along which limit

cycles with multiplier +1 exist making one global excursion and a number of
small turns near the equilibrium. These curves accumulate to the saddle-focus
part of the primary homoclinic curve. Each curve resembles a ‘horn’ consisting

of two branches that meet at a cusp point CP
(1)
n . The sequence of cusp points

converges to α = 0.
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(ii) An infinite number of period-doubling bifurcation curves PD
(1)
n , n ∈ N, along

which limit cycles with multiplier −1 exist making one global excursion and a

number of small turns near the equilibrium. Away from the cusp points CP
(1)
n ,

these period-doubling curves have the same asymptotic properties as the fold

bifurcation curves LP
(1)
n . These period-doubling curves could either be smooth

or have self-intersections developing small loops around the corresponding cusp
points.

(iii) An infinite number of secondary homoclinic curves Hom
(2)
m , m ∈ N, along which

the equilibrium has homoclinic orbits making two global excursions and a number
of turns near the equilibrium after the first global excursion. These curves also
accumulate to the saddle-focus part of the primary homoclinic curve. Each curve
resembles a ‘parabola’ and the sequence of turning points converges to α = 0.

(a) (b)
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(1)
n

LP
(1)
n+1

3DLHom(1)

CP
(1)
n+1
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(1)
n

LP
(1)
n+1

Hom
(1)

CP
(1)
n

CP
(1)
n+1

CP
(1)
n

3DL

Figure 6.11: A sketch of two consecutive LP horns from Theorem 6.5.1. The saddle-focus
part of Hom(1) branch is drawn in blue. The difference between cases (a) and (b) is
explained in the text.

The genericity mentioned in the theorem means the nondegeneracy conditions
(A.3)-(A.5). Part (i) of Theorem 6.5.1 is illustrated in Figure 6.11. Notice that

LP
(1)
n curves can intersect the primary homoclinic branch Hom(1) either at saddle

points (Figure 6.11(a)) or at saddle-focus points (Figure 6.11(b)). In terms of the
1D (or 3D) model map these cases correspond to C0

1 > |C0
2 | or 0 < C0

1 < |C0
2 |,

respectively. See equation (6.38).

Part (iii) of Theorem 6.5.1 is illustrated in Figure 6.12. Notice that the turning

points of the secondary homoclinic curves Hom
(2)
m approach the 3DL-transition

point on Hom(1) either along its saddle part (Figure 6.12(a)) or its saddle-focus
part (Figure 6.12(b)). Note in case (a) we have an infinite sequence of pairs
of secondary 3DL-transitions accumulating to the primary 3DL-transition. In
terms of the 2D (or 3D) model map these cases also correspond to C0

1 > |C0
2 | or
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(b)(a)

Hom
(2)
m

Hom
(2)
m+1

3DL 3DL

Hom
(2)
m+1

Hom
(2)
m

Hom(1) Hom(1)

Figure 6.12: A sketch of two consecutive secondary homoclinic curves from Theorem
6.5.1. The saddle-focus part of Hom(1) branch is drawn in blue. The difference between
cases (a) and (b) is explained in the text. The vertical dashed line indicates the saddle
to saddle-focus transition. In case (a) the points where the secondary homoclinic curves
intersect the dashed line correspond to secondary 3DL-transitions.

C0
1 < |C0

2 |, respectively. See equation (6.61).

Our numerical analysis of the truncated model 3D map (6.22) also reveals NS
curves in very small domains between the PD- and LP-curves. These curves
correspond to torus bifurcation of cycles in the ODE system and do not exist
for all combinations of (C0

1 , C0
2). The end points of the NS segment are strong

resonance points. There are other codimension 2 points, i.e. GPD and LPPD.
All these points will also be present in the generic ODE system and should form
sequences that converge to the 3DL-transition point.

6.6 Examples

In this section we study the presence of the 3DL-transition in two 4D ODE
models.

6.6.1 Neural field model

In [186], a 3DL-transition was observed in a traveling wave system for a neural
field equation. The corresponding ODE system is































u̇ =
−u + ψ − a

c
,

φ̇ = φ,

ψ̇ = ψ − f (u),

ȧ =
κu − a

cτ
,

(6.70)
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where f (u) = (1+ exp (β(u − θ)))−1. The parameters β = 20, τ = 4.4, θ = 0.3
are fixed and κ, c are varied. The adaptation strength κ influences what
wavespeeds c are admissible. Figure 6.13 (left) shows a part of the bifurcation
diagram where the homoclinic orbit corresponding to a traveling wave is
recomputed using Matcontb [344, 345]. The upper part of this curve involves
stable waves. On the homoclinic orbit we have detected two codim 2 bifurcation
points. The first is the 3DL-point at (κ, c) ≈ (0.7413, 0.4213), while a neutral
saddle (WT) occurs at (κ, c) ≈ (0.7415, 0.5232). The real part of the eigenvalues
along the branch is shown in Figure 6.13 (right). At the 3DL-point we have
eigenvalues λ1 = 0.9847, λ2 = −1.2999, λ3,4 = −1.2999 ± 0.058i. So this
concerns the tame case (ν0 > 1), while the saddle-focus switches from tame
to wild at the neutral saddle (WT). Next we were able to locate two LPC-‘horns’
with corresponding cusps (using 120 mesh points with default tolerances). As
predicted, we observe only finitely many ‘horns’ as this example exhibits the
tame case. Note that CP2 corresponds to a cycle with higher period than CP1,
and is further away from 3DL.

The significance of the two codim 2 points is as follows. As we start from c = 0.4
and increase c, we have a saddle-homoclinic orbit and move past the 3DL-point.
We then have a tame saddle-focus homoclinic orbit. For nearby parameters,
there are only finitely many periodic orbits. For the traveling waves, this implies
the existence of a finite number of periodic pulses (wave trains), see [186] for
more details. The additional wave trains appear from the limit point of cycle-
bifurcations. Beyond the WT-point, there are infinitely many such waves.
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(a) Partial bifurcation diagram
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Re( )

(b) Real part of eigenvalues

Figure 6.13: Bifurcation diagram of system (6.70). (a) The homoclinic bifurcation curve
exhibits two codim 2 points, 3DL and WT. Near the homoclinic bifurcation curve there
are two more fold of cycle bifurcation curves. They are too close to the homoclinic
to be resolved, but both fold curves exhibit a cusp bifurcation CP1,2. (b) Real part
of eigenvalues of the saddle on the homoclinic bifurcation curve. At c = 0.4213, the
three stable eigenvalues are distinct but have equal real parts. At c = 0.5232, the saddle
quantity vanishes.
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6.6.2 Lorenz-Stenflo model

As an example of a wild 3DL transition, we study the Lorenz-Stenflo (LS)
equations. These equations are a generalization of the well-known Lorenz
equations [346], that describe low-frequency, short-wavelength acoustic-gravity
perturbations in the atmosphere with additional dependence on the earth’s
rotation. The LS equations are as follows:















ẋ = σ(y − x) + su,
ẏ = rx − xz − y,
ż = xy − bz,
u̇ = −x − σu,

(6.71)

where σ is the Prandtl number, r is a generalized Rayleigh parameter, b is a
positive parameter and s is a new parameter dependent on the Earth’s rotation
[347]. Setting s = 0 reduces the first three equations in (6.73) back to the original
Lorenz model. The system (6.71) demonstrates chaotic dynamics and has a very
complicated bifurcation diagram [348, 349, 350].

System (6.71) possesses the Z2-symmetry

(x, y, z, u) 7→ (−x,−y, z,−u),

and has one or three equilibria (the trivial equilibrium exists always). The
system exhibits a wild 3DL-transition of the primary homoclinic orbit to the
trivial equilibrium at parameter values,

σ = 2, s = 203.47975, r = 126.43527, b = 6, (6.72)

for which the eigenvalues are δ0 ± iω0, δ0 and ǫ0 with δ0 = −6, ω0 ≈ 2.5708,
and ǫ0 ≈ 7, so that ν0 < 1 indeed. However, the corresponding PD and LP
curves are difficult to resolve due to highly contractive properties close to the
transition, caused by large real parts of the eigenvalues at the trivial equilibrium.
Moreover, its bifurcation diagram will include additional bifurcation curves, e.g.
related to (symmetric) cycles and heteroclinic orbits.

To overcome this, we perturb the system to get:














ẋ = σ(y − x) + su,
ẏ = rx − xz − y + ǫ1z,
ż = xy − bz,
u̇ = −x − σu + ǫ2y,

(6.73)

where the bold expressions are perturbation terms. This system is not Z2-
symmetric anymore, but still has a trivial equilibrium for all parameter values.
We are not aware of any physical interpretation of the added terms.
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Figure 6.14: Bifurcation curves near a wild 3DL-transition in the (b, r)-plane: cyclic folds
(red), period-doublings (blue), primary homoclinic (black), 3DL equilibrium transition
(dashed black) and secondary homoclinics (green). For other parameter values, see (6.74).

The trivial equilibrium has homoclinic orbits, and in µ 6.14, we see a wild 3DL
transition along the primary homoclinic curve (black) in the perturbed LS system
(6.73) with

σ = 0.1, s = 33, ǫ1 = 0.1, ǫ2 = 0.3. (6.74)

The 3DL-transition point is located at

(r, b) ≈ (15.302531, 1.9884).

The corresponding eigenvalues are δ0 ± iω0, δ0, and ǫ0 with δ0 ≈ −1.9884, ω0 ≈
6.2265, ǫ0 ≈ 2.7769, so that ν0 < 1 as well.

We clearly see PD (blue) and LP (red) curves accumulating onto the primary
homoclinic curve according to the theory. The PD curve within each ‘horn’
forms a saddle area. The secondary homoclinic curves (green) form ‘parabolas’
on one side of the primary homoclinic curve as expected. The curve of trivial
equilibria with a 3D stable eigenspace is shown as a dashed line. The cusp
points on each LP horn form a sequence, and asymptotically approach the 3DL
point at the intersection of the black curve with the dashed line. The inset shows
only the LP horns. For this model the bifurcation curves have been computed
using Matcontb [344] also based on [351, 345]. There is, however, no stable
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chaotic dynamics in the parameter range of µ 6.14.

We have also computed kneading indices [352, 353] to characterize the nature of
attractors in parameter space in more detail. At each point in the parameter
space, an orbit is computed starting from a phase point near the trivial
equilibrium shifted in the unstable direction with x negative. Next, the number
of extrema in the x-variable are indexed as follows. For the ith extremum at time
ti we have

ci =

{

1, if x(ti) < 0,
0, if x(ti) > 0.

(6.75)

Next we compute the finite approximation of the kneading index,

K =
N

∑
i=1

ciq
i, (6.76)

where q is chosen to be less than 1 and N is finite. The value of K itself bears no
meaning, but a change in index may quantify the following events: either there
is a homoclinic bifurcation, or one of the extrema of the time series passes zero.
The latter is not a bifurcation as there is no structural change in the dynamics.
It is difficult, however, to eliminate such false bifurcations automatically. In
Figure 6.15 we overlay homoclinic bifurcation curves to find agreement between
changes in kneading index and homoclinic bifurcation curves. The changes in
color indicate where one may find a homoclinic bifurcation. Kneading indices
are typically used for symmetric systems which allow a clear threshold to set ci,
but as a first inventory of homoclinic bifurcations prove rather useful here, e.g.
the double and triple homoclinic bifurcation curves.

6.7 Discussion

We have studied bifurcation diagrams of 4D two-parameter ODEs having at
some critical parameter values a homoclinic orbit to an hyperbolic equilibrium
with one simple unstable eigenvalue and three simple stable eigenvalues (one
real and a complex-conjugate pair). We demonstrated that this phenomenon oc-
curs in two 4D ODE systems appearing in applications. We focused on the case
where a transition from a saddle homoclinic orbit to Shilnikov’s wild saddle-
focus homoclinic orbit takes place at the critical parameter values. Similar to
the 3D Belyakov’s saddle to wild saddle-focus homoclinic transition, we found
infinite sequences of codim 1 bifurcations curves related to limit cycles, i.e. folds
and period-doublings, and secondary homoclinic orbits accumulating on the
primary (wild) saddle-focus homoclinic branch. However, there is a striking
difference between these two cases. While in the standard Belyakov case all
bifurcation curves approach the codim 2 point in the parameter plane tangen-
tially to the saddle-focus homoclinic curve (having actually tangency of infinite
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Figure 6.15: Kneading indices for the perturbed Lorenz-Stenflo model (6.73) in the (b, r)-
plane for fixed parameters (6.74). Color codes in gray indicate domains with the same
kneading index. The following bifurcation curves computed in matcont are overlaid:
primary homoclinic (black,dashed), secondary homoclinic (green), tertiary homoclinic
(pink), quadruple homoclinic (blue) and cyclic fold (red).
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order) and form ‘bunches’, in the considered 3DL case none of them emanates
from the codim 2 point. Instead, they form sequences of ‘horns’ with cusps
and other codim 2 bifurcation points, or ‘parabolas’. The sequences of codim 2
points and parabola tips indeed converge to the studied homoclinic 3DL point.
In a sense, the bifurcation diagram for the considered 3DL-transition resembles
more another codim 2 homoclinic bifurcation studied by Belyakov: A transition
from tame to wild saddle-focus homoclinic orbit in 3D ODEs, when the saddle
quantity vanishes [354]. In that case, fold bifurcation curves for cycles also have
cusp points accumulating to the transition point, while the secondary homo-
clinic curves look like ‘parabolas’ with tips tending to the transition point. The
exact source of this similarity remains a mystery but might be related to the
simplicity of all eigenvalues in both cases.

One can employ the C1-linearisation theorem by Belitskii [355, 326] to get the
C1-equivalence of the flow generated by (6.2) to that corresponding to its linear
part, near the equilibrium O = (0, 0, 0, 0):















ẋ1 = γ(µ)x1 − x2,
ẋ2 = x1 + γ(µ)x2,
ẋ3 = (γ(µ)− µ1) x3,
ẋ4 = β(µ)x4.

(6.77)

This theorem is applicable, since

Re λi 6= Re λj + Re λk

for all eigenvalues of the saddle-focus at and near the 3DL homoclinic transition.
This would allow one to easily obtain the Poincaré return map (6.20), but only
permits to employ its first-order partial derivatives due to lack of smoothness.
This would be sufficient to derive asymptotics for the fold and period-doubling
bifurcations of the primary limit cycles, as well as those for the secondary
homoclinic orbits. However, to verify nondegeneracy conditions for LP and
PD bifurcations and to detect codim 2 points, one needs higher-order partial
derivatives of the return map Π. Their existence can be granted by using the
Ck-linearisation near the equilibrium with sufficiently big k > 1. This exists
according to the Ck-linearisation theorem by Sternberg [356], if one imposes a
finite number of low-order non-resonance conditions on the eigenvalues, i.e.

λi 6=
4

∑
j=1

njλj,

where nj ≥ 0 and 2 ≤ ∑
4
j=1 nj ≤ N for some N = N(k) (see also [357, 329]).

However, our analysis shows that such extra conditions can be avoided, similar
to other homoclinic bifurcation scenarios [328].
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For n-dimensional systems, generically the analysis of homoclinic bifurcations
can be restricted to the Homoclinic Center Manifold, a k-dimensional invariant
finitely-smooth manifold that is tangent at the equilibrium to the eigenspace
corresponding to the union of all leading eigenvalues [358, 338, 359, 360]. Thus,
k is the number of all leading eigenvalues of the equilibrium, counting their mul-
tiplicities. For the considered 3DL saddle to saddle-focus homoclinic transition
case, we have k = 4. Thus, our analysis of four-dimensional ODEs is sufficient
to predict the main features of the bifurcation diagram near this transition in
a generic n-dimensional situation. However, some ‘gap’ conditions should be
imposed on the eigenvalues of the critical equilibrium to guarantee more than
C1-smoothness of the homoclinic center manifold that is needed for bifurcation
analysis. Whether or not one can avoid using the homoclinic center manifold
requires further analysis.

It will also be interesting to study n-homoclinic orbits with n ≥ 2 near the
considered bifurcation and, in particular, investigate whether they could be
degenerate. Another challenge would be to prove analytically the existence of
infinite sequences of generalized period-doubling points and strong resonances
(see Figure 6.7), at least for the truncated 3D model map (6.22). An interesting
research direction is also to study the homoclinic 3DL transition in volume-
preserving 4D ODEs, where it is always wild and has codim 1.





Chapter 7
General Discussion

This thesis presents novel results surrounding the themes of data, models
and bifurcations from a computational neuroscience perspective. The first
part, Chapters 2 and 3, focuses on biophysical models that describe the
pathophysiology of ischemic stroke at a local (synaptic) and global (population)
level. Next, a data-driven model discovery method that generates parameter-
dependent models is presented in Chapter 5. Lastly, Chapter 6 describes the
unfolding of a novel homoclinic bifurcation, first observed in the traveling wave
frame of a neural field model.
The challenges addressed and methods proposed reflects different approaches
to mathematical modeling. On the one hand, in Chapters 3 and 4, the proposed
models are biophysical and detailed. They are interpretable, corroborate to
multiple isolated experiments and provide an in silico platform for exploring
the effect of several interventions on physiological function. On the other
hand, the models proposed in Chapter 5 and 6 arise from analyzing underlying
bifurcations in physical phenomena. In this case, the models are desired
to be compact - with as few nonlinear terms as possible - to be able to
efficiently describe phenomena resulting from higher-dimensional dynamics.
This dichotomy of bottom-up and top-down modeling and its consequences are
highlighted in the following discussion.
In this chapter, the results of this thesis are discussed in the context of current
challenges in the domains of ischemia, computational modeling and bifurcation
analysis. Next, future work is proposed to extend the validity of the results
shown.

7.1 Consequences of biophysical modeling

In Chapter 3, a novel biophysical model of the tripartite synapse is introduced,
which explicitly describes ion dynamics in a presynaptic neuron, the synaptic
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cleft and a perisynaptic astrocyte process. As part of the model, an elaborate
glutamate recycling scheme is also proposed, that describes Ca2+-catalyzed
vesicular packing and glutamate transport mediated by excitatory amino acid
transporters (EAATs). Thus for the first time, a mathematical formulation of
ion transport of Na+, K+, Cl−, Ca2+ and glutamate at the tripartite synapse is
described in the context of ischemia. In Chapter 4, this formulation is extended
to a population level. The proposed neural mass uses explicit ion dynamics to
describe synaptic currents and the synaptic response, based on a novel firing
rate function depending on ion concentrations and Nernst potentials, as done
in [139].
In both chapters, the elaborate models contain descriptions of specific ion
channels and additional properties such as cellular volume and inter-population
network connectivities. Consequently, the models are subjected to differential
sensitivity analysis with respect to these factors. The aim with such analyses
is to understand how these neural systems adapt to varying conditions during
ischemia, and corroborate the model to previously observed experimental data.
In Chapter 3, it is demonstrated that synapses with smaller extracellular spaces
and weaker ATPases present higher vulnerability to low-energy conditions. Both
these properties feature in adult brains and may explain the effect of aging on
ischemic tolerance [207]. Varying extracellular sizes and ATPase strengths can
also manifest in different brain regions, which can thus explain the selective
survival of lower brainstem neurons during low-energy conditions [15, 225]. By
blocking specific ion channels post energy-restoration, it was found that recovery
from a depolarized state is possible by shutting down voltage-gated Na+ and
K+ transport. These observations are consistent with previous experimental
literature that suggest these therapeutic measures [228, 229]. Following novel
experiments of Cl− dynamics during ischemia [12], it was further shown that
the differential behavior of Cl− dynamics in different brain regions may be
attributed to varying expressions of the cotransporters KCC and NKCC1.
On a population level, Chapter 4 focuses on the effect of neuronal Na+/K+-
ATPase (NKA) and vesicular ATPase (vATP) inhibition, and network dysregu-
lation on synaptic rhythms. It is shown that between the two ATPases, NKA
behavior controls synaptic rhythms qualitatively, which is consistent with the
ATP-greedy nature of NKA [41]. At a network level, examining the strength
of thalamocortical connectivity shows that the interface of healthy rhythms and
synaptic arrest is marked by low-voltage oscillations or burst-like behavior, sim-
ilar to generalized periodic discharges (GPDs) [292]. These interface points are
marked by either subcritical or supercritical Hopf bifurcations, and it is pro-
posed that a generalized Hopf bifurcation controls the transition between the
Hopf criticalities.
In both chapters, a bottom-up modeling approach is used to address biological
and clinical challenges. These descriptions rely crucially on experimental data of
low-energy dynamics at the synaptic and population level. The data is obtained
from several isolated experiments on Na+ and K+ dynamics [11], membrane
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potential changes [15] and EEG rhythms [262, 14]. However, the experimental
observations do not constitute the entirety of the modeled state-space. For
instance, time-traces of neuronal K+ and volume changes remained unavailable
during the modeling process and need to be modeled. Thus, ion homeostasis
was described using biophysical models inspired by previously published
work [102, 43, 89]. As a result, these models are robust formulations for
detailed studies of ion dysregulation and synaptic reorganization during low-
energy conditions or possibly other scenarios such as epilepsy and spreading
depolarization.

7.2 Parameter-dependency in models

The second part of this thesis, Chapters 5 and 6, explores transitions in modeling
from two different perspectives, data and analysis. In Chapter 5, the working
assumption is that the characteristic behavior of the underlying bifurcations
in data is known, and data-driven techniques are used to discover these
bifurcations. However, in Chapter 6, the canonical dynamics of the underlying
bifurcation are unknown, and its unfolding is described using a model map. In
both cases, the underlying models are parameter-dependent and are required
to be compact and simple - the model equations are described with as few
nonlinear terms as possible.
Models constructed using biophysical principles can often result in complex
descriptions with several parameters, of which not all can be inferred or
estimated. Moreover, these models are not always ‘feature-rich’ - the complex
descriptions do not necessarily manifest in rich qualitative features. For
instance, the description of glutamate recycling in Chapter 3 amounts to 7
differential equations and 11 parameters. The bifurcation diagram of the full
system results in two stable states of glutamate - baseline and pathological. A
phenomenological model in place could replicate this bistable behavior in far
fewer equations and parameters. Compact phenomenological representations
of complex subsystems can be very useful when embedding them in spatial
extensions and networks. However, model equations and predictions arising
from such representations can be difficult to interpret.
The key element in feature-rich, compact phenomenological models is the
presence of various bifurcations, that govern the transition between several
desirable behavioral patterns. Current model discovery methods do not account
for parameter variance and thus are only partially able to address this issue
[27, 26]. In Chapter 5, normal forms are used as the low-dimensional models
underlying high-dimensional parameter-varying data. The low-dimensional
representation is achieved by using coupled autoencoders of state and parameter
and forcing the latent space to be governed by the corresponding normal
form equation. As a result, parameter-dependent low-dimensional models are
discovered directly from data for the first time. The method is applied to several
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pattern transitions arising in neuroscience and physics.
The idea of using data-driven methods in conjunction with normal forms and
bifurcation theory is not entirely new. In [361] zigzag persistence homology is
used to identify the presence of Hopf bifurcations in datasets. Diffusion maps
have been used to identify the location of the time-trace in the corresponding
bifurcation diagram [168]. However, the approach in Chapter 5 is the first of its
kind to perform model discovery in the context of parameter-varying datasets -
and provides tangible evolution equations. The method can also be interpreted
as a data-driven center manifold reduction and is the first step in using normal
form equations as building blocks for model discovery.
In Chapter 5, the a priori knowledge of canonical transitions in parameter-
varying datasets are embedded in normal form equations, which are exploited
to construct low-dimensional representations of high-dimensional datasets.
However, it is common to come across bifurcations in models that are not
associated with normal forms, but via model maps. These model maps are
typically used to describe global bifurcations of homoclinic and heteroclinic
orbits [169], where the corresponding Poincaré return map changes from system
to system.
In Chapter 6, a novel homoclinic bifurcation dynamical in the traveling wave
frame of a neural field model [186] is studied, and a model map is constructed
to describe its unfolding. The bifurcation corresponds to a homoclinic saddle
to saddle-focus transition, with a three-dimensional leading (3DL) stable
eigenspace and a one-dimensional leading unstable eigenspace at the criticality.
It is shown that in the wild case, the Shilnikov approach predicts a cascade of
period-doubling, limit point, secondary homoclinic curves and even secondary
3DL points in the vicinity of the codimension two bifurcation point.
The unfolding of the bifurcation is remarkably different from the known
Belyakov-type saddle to saddle-focus homoclinic transitions, particularly the
existence of a cascade of secondary codimension two points in the vicinity of
the bifurcation. The predictions of the bifurcation analysis for the wild case
were confirmed only in a perturbed Lorenz-Stenflo model. Nevertheless, the
consequences in the original neural field equation are interesting. The model
map predicts the presence of a cascade of traveling pulses and waves close by,
including pulse solutions with multiple bumps.

7.3 Future work and outlook

The scope of work covered in this thesis advances efforts in bottom-up and top-
down approaches in the context of computational neuroscience. This section
discusses possible extensions in the future points in these directions.
In Chapter 3, glutamate recycling is explicitly modeled, which describes
changing glutamate concentrations in the synaptic cleft during low-energy
conditions. Given the small and dynamic volume of the cleft, multiple
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glutamate release sites and disparate glutamate measurements in literature
[362], calibrating glutamate time traces from the model is challenging. Explicit
modeling of a postsynaptic compartment would help perform this calibration
and complete the tripartite synapse model. There is plentiful data on excitatory
postsynaptic potentials (EPSPs) [363] in response to incoming activity from a
presynaptic neuron, also in low-energy conditions [364, 365]. The postsynaptic
potentials can be described by explicilty modeling AMPA and NMDA receptors
in an extra neuronal compartment - as done in [97, 100, 252] - whose dynamics
depend on extracellular glutamate concentration. Cleft glutamate accumulation
during low-energy conditions can desensitize these receptors. Such an approach
allows for possible explanation of early postsynaptic failure during low-energy
conditions, where presynaptic function remains intact.
On the other hand, early synaptic arrest in excitatory synapses has also
been attributed to presynaptic failure [13]. This phenomenon is exploited
in the neural mass model in Chapter 4, but remains a challenge for the
tripartite synapse model. This is due to the glutamate recycling scheme, that
does not have a mechanism for glutamate replenishment in the presynaptic
terminal. Model simulations show that persistent energy deprivation causes
a an accumulation of extracellular glutamate and depletion of presynaptic
glutamate storage. Consequently, all extracellular glutamate is absorbed by
strong astrocyte EAAT activity following energy restoration. This behavior
is accompanied by irreversible cellular depolarization and cell swelling of the
full system. To study selective presynaptic failure, it is thus vital to model a
more efficient glutamate recycling scheme in order to break this ‘synchrony’. A
candidate pathway is the glutamate-glutamine cycle as modeled, for instance,
in [366], which allows astrocyte-driven replenishment of neuronal glutamate,
resulting in a feedback mechanism. In Chapter 4, differential sensitivity of
oxygen deprivation to the activity of the two ATPases: NKA and the vesicular
ATPase (vATPase) is studied. The vATPase model is modeled simply as a
sigmoidal function of extracellular oxygen concentration and helps to explain
the selective presynaptic phenomenon in low-energy conditions. In conjunction
with the postsynaptic compartment, the vATPase model can also be included in
the tripartite synapse model in Chapter 3 to understand the differential effects
of presynaptic and postsynaptic failure on synaptic communication during low-
energy conditions.
In Chapter 4 a neural mass model is developed that depends on ion dynam-
ics. The key modeling elements governing the pathophysiology of population
rhythms are the firing-rate function and the interconnected synaptic currents.
Both depend explicitly on ion concentrations. Recent experimental work on post-
stroke therapy shows that optogenetically stimulation of thalamocortical and
corticothalamic axons aids in restoring sensory function [77, 367]. The neural
mass demonstrates the differential effects of altered thalamocortical projections
on healthy rhythmic behavior, while altered corticothalamic projections do not
disrupt healthy activity. The difference arises possibly due to the simple as-
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sumptions in connectivities and functional differences between the populations.
Modeling detailed synaptic currents, response functions and functional differ-
ences between all populations would permit a detailed study of stroke-mediated
circuit rewiring and therapeutic measures.
The firing-rate function now explicitly depends on ion dynamics. This can be
directly implemented in a neural field model coupled with extracellular ion
diffusion and pointwise uptake. Using such a model, the onset and propagation
of waves of ion dynamics and spreading depolarization can be studied, that are
associated with early transient energy deprivation [368, 369, 11]. The multi-scale
approach of combining biophysics, neural masses and neural fields have been
explored in previous works such as [127, 370] and can reconcile local events such
as ion dysregulation and presynaptic/postsynaptic failure with global events
such as spreading depolarization and impairment in synaptic communication,
during low-energy conditions.
The model discovery method introduced in Chapter 5 is the groundwork for
building parsimonious, parameter-dependent models directly from data. The
introduced method discovers transformations from datasets directly to the
corresponding normal form equation. Several further steps are thus required
to elevate the approach to perform generalizable model discovery. Consider
for instance, the scalar ODE problem introduced in Chapter 5. Ideally the
model discovery method should obtain the governing ODE directly from data,
requiring several normal forms (limit point, pitchfork and transcritical) to
be simultaneously discovered close to several bifurcation points. Two key
challenges arise: choosing the right normal form, and its validity in state-
parameter space.
The first challenge can be addressed by using a refinement-selection process
while training the neural networks. This method was deployed for identifying
the correct model terms in [26]. There, expansion coefficients for a candidate
library of model terms were computed using SINDy. In the normal form
autoencoder approach, the model terms are replaced by normal forms, and
the refinement would have to be performed by eliminating worst fit (say in l2)
over several epochs. Next, the selected normal form would be valid in a small
state-parameter neighborhood of the corresponding bifurcation point. Using
SINDy [157], higher-order normal form terms can be computed to expand this
neighborhood. However, another challenge arises at the intersection of two
possible normal forms. SINDy may again be used to compute functions that
mollify the intersecting domains.
Learning neural-network-based transformations to the center manifold results
in several local minima, some of which are mitigated with the orientation loss
terms introduced in Chapter 5. The normal form autoencoder approach learns
mappings between state-parameter spaces of autonomous dynamical systems.
It would thus be useful to introduce translational equivariance in the neural
networks to accommodate for several local minima arising from translation in
time. Convolutional neural networks naturally have translational equivariance
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(if combined with max-pooling) [162], and are inherently suitable for multi-
channel data, such as higher-dimensional PDEs. Multi-dimensional PDE data
can also be systematically compressed using tensor network methods [371, 372].
From a theoretical viewpoint, it is vital to understand whether the discovered
latent space defines the relevant center manifold as this has a direct consequence
on the existence of solutions to the normal form autoencoder problem. The
right choice of network architecture, regularizations and hyperparameters are a
standard problem in deep learning theory. However, the solution to the existence
problem places constraints on these choices and will provide a focused approach
to performing data-driven center manifold reduction.
In Chapter 6, the model map describes the dynamics of the 3DL bifurcation
on the homoclinic center manifold. The map contains two critical coefficients,
C1 and C2, that govern the orientation of the various bifurcation curves around
the codimension-two point, which are not explicitly computed for the examples
shown. Classical numerical computation of the Poincaré map can reveal these
coefficients, which would be useful especially to identify the case where a
cascade of secondary 3DL points occur nearby. Recently, SINDy has also been
used to compute these maps [373], which can be handy in domains with several
saddle periodic orbits, such as with the 3DL bifurcation.
Another peculiar case arises in the traveling wave frame of the neural field model
in [186], for κ = 0.7, θ = 0.3 and τ ≈ 4.5. Varying the eigenvalues of the system
with respect to parameter β shows a clear transition from the 3DL (τ < 4.5) to
Belyakov (τ > 4.5) case. The transition point corresponds to hyperbolic triple-
real leading eigenvalues, i.e., a possible codimension 3 point. As with the 3DL
case, the transition occurs only in the tame case (ν > 1), and no interesting
behavior is observed nearby. An interesting question thus arises again regarding
the unfolding of this codimension 3 point, in the wild case (ν < 1).





Summary

This thesis is concerned with building and analyzing mathematical models in
computational neuroscience using bottom-up and top-down approaches. Models
are constructed using biophysical principles to understand the pathophysiology
of cerebral ischemia at different spatial and temporal scales. Data-driven
techniques in conjunction with machine learning are used to build compact
parameter-dependent models from high-dimensional data. Finally, model maps
are introduced to explain the generic unfolding of a newly observed bifurcation.
In Chapter 3, a comprehensive biophysical model of a glutamatergic synapse
is developed, to identify key determinants of synaptic failure during energy
deprivation. The model is based on fundamental biophysical principles, includes
dynamics of the most relevant ions, i.e., Na+, K+, Ca2+, Cl− and glutamate,
and is calibrated with experimental data. It confirms the critical role of the
Na+/K+-ATPase in maintaining ion gradients, membrane potentials and cell
volumes. The simulations demonstrate that the system exhibits two stable
states, one physiological and one pathological. During energy deprivation, the
physiological state may disappear, forcing a transit to the pathological state,
which can be reverted when blocking voltage-gated Na+ and K+ channels.
The model predicts that the transition to the pathological state is favoured if
the extracellular space fraction is small. A reduction in the extracellular space
volume fraction, as, e.g. observed with ageing, will thus promote the brain’s
susceptibility to ischemic damage. The work thus provides new insights into the
brain’s ability to recover from energy deprivation, with translational relevance
for diagnosis and treatment of ischemic strokes.
In Chapter 4, the relationship between electroencephalogram (EEG phenomen-
ology and cellular biophysical principles is studied using a model of interact-
ing thalamic and cortical neural masses coupled with energy-dependent syn-
aptic transmission. The model faithfully reproduces the characteristic EEG phe-
nomenology during acute cerebral ischemia and shows that synaptic arrest oc-
curs before cell swelling and irreversible neuronal depolarization. The early
synaptic arrest is attributed to ion homeostatic failure due to dysfunctional
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Na+/K+-ATPase. Moreover, it is also shown that the excitatory input from
relay cells to the cortex controls rhythmic behavior. In particular, low relay-
interneuron interaction manifests in burst-like EEG behavior immediately prior
to synaptic arrest. The model thus reconciles the implications of stroke on a
cellular, synaptic and circuit level and provides a basis for exploring multi-scale
therapeutic interventions.
In Chapter 5, deep learning autoencoders are introduced to discover coordinate
transformations that capture the underlying parametric dependence of a
dynamical system in terms of its canonical normal form, allowing for a simple
representation of the parametric dependence and bifurcation structure. The
autoencoder constrains the latent variable to adhere to a given normal form,
thus allowing it to learn the appropriate coordinate transformation. The method
is demonstrated on a number of example problems, showing that it can capture
a diverse set of normal forms associated with Hopf, pitchfork, transcritical
and/or saddle node bifurcations. This method shows how normal forms
can be leveraged as canonical and universal building blocks in deep learning
approaches for model discovery and reduced-order modeling.
Finally, in Chapter 6, a saddle to saddle-focus homoclinic transition when
the stable leading eigenspace is 3-dimensional (called the 3DL-bifurcation) is
analyzed. Here a pair of complex eigenvalues and a real eigenvalue exchange
their position relative to the imaginary axis, giving rise to a 3-dimensional
stable leading eigenspace at the critical parameter values. This transition is
different from the standard Belyakov bifurcation, where a double real eigenvalue
splits either into a pair of complex-conjugate eigenvalues or two distinct real
eigenvalues. In the wild case, sets of codimension 1 and 2 bifurcation curves are
obtained, along with points that asymptotically approach the 3DL-bifurcation
point and have a structure that differs from that of the standard Belyakov case.
An example of this bifurcation is also provided in a perturbed Lorenz-Stenflo
4D ODE model.
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