## Synapses in distress

Differential sensitivity to energy deprivation at the tripartite synapse

Manu Kalia (UTwente) Joint work with: Hil Meijer (UT), Stephan van Gils (UT), Michel van Putten (UT), Christine Rose (HHU Düsseldorf)

SMB 2021 Annual Meeting

June 14, 2021



#### Ischemic stroke





#### Stroke: core vs penumbra

 ${\sf Clinical \ pathophysiology: \ SD/PID}$ 

<sup>2</sup>Rakers and Petzold, J. Clin. Invest. (2017)

UNIVERSITY OF TWENTE.

<sup>&</sup>lt;sup>1</sup>Hartings et al., JCBFM (2017)

# Clinical outcome



#### Functional failure precedes neuronal death

UNIVERSITY OF TWENTE.

<sup>&</sup>lt;sup>1</sup>Hofmeijer and van Putten, Stroke 43 (2012)

<sup>&</sup>lt;sup>2</sup>Rungta et al., *Cell 161* (2015)

Key question: Can we qualify/quantify the point-of-no-return? Idea: Investigate at synaptic level!

# Energy dynamics at the synapse



Takeaway: Investigate ion dynamics at the tripartite synapse.

<sup>&</sup>lt;sup>1</sup>Deitmer et al., Front. Neurosci. (2019)

#### Ion dynamics at the tripartite synapse



# Ischemic pathophysiology



#### Previous work

- Neuron-astrocyte interactions: Somjen et al. (2002); Kager et al. (2007); Østby et al. (2009); ;
- $Ca^{2+}$ -induced- $Ca^{2+}$ release + EPSP: Nadkarni and Jung (2007)
- Gliotransmission (feedback loop): De Pittà and Brunel (2016); Tewari and Majumdar (2012); Wade et al. (2011)

**Our novelty:** Couple 'bulk' ion concentrations with 'synaptic' ion concentrations and volume changes in a biophysical setting.

#### Chemical ischemia: a common protocol



Gerkau et al., Cerebral Cortex (2018)

UNIVERSITY OF TWENTE.

#### Novel model



UNIVERSITY OF TWENTE.

- Ion molar amounts and concentrations  $\rightarrow$   $Na^{+},K^{+}Cl^{-},Ca^{2+}\text{and}$  Glu.
- Compartmental volumes
- Relative contribution of ion transporters to respective ion gradients.

- 1. [Validation] Differential sensitivity to  $\rm Na^+/\rm K^+\mbox{-}ATPase$  strength
- 2. [Analysis] Vulnerability to varying ECS volume fraction
- 3. [Prediction] Predicting cleft  $\rm Ca^{2+}$  and glutamate transients  $\rightarrow$  synaptic failure
- 4. **Prediction**] Recovering from pathological state with additional blockers

# Validation: explaining isolated experiments



Experiments from Brisson and Andrew J. Neurophysiol. (2012)

## Analysis: Vulnerability w.r.t. ECS size



#### Prediction: Glutamate response in the cleft to bursts



Glutamate builds up after a few consistent spikes, followed by transient dip back to baseline.

#### Prediction: Therapeutic measures help synapses recover



UNIVERSITY OF TWENTE.

## Takeaway

- Model that simulates  $Na^+,\,K^+,\,Cl^-,\,Ca^{2+}$  and glutamate dynamics during low energy conditions in:
  - soma: neuron, astrocyte
  - *synaptic processes*: presynaptic terminal, perisynaptic astrocyte process
  - extracellular space
- ECS size and pump strength are crucial in recovery from ischemic damage.
- $\bullet$  Further, blocking voltage-gated  $Na^+$  and  $K^+$  channels assist in recovery from pathological state.
- Model can be further used to explain differential behaviour in different brain regions, aging etc.

## Thanks! Any questions?



- Peer-reviewed code: github.com/mkalia94/TripartiteSynapse
- Paper (accepted at PLOS Comp. Bio.): https://www.biorxiv.org/content/10.1101/2021.03.19.436129v1

# $\mathrm{Ca}^{2+}$ and Glu during energy deprivation



Energy deprivation sustains  $\approx 1 \text{mM}$  buildup of Glu in the cleft. Demonstrates synaptic failure

# Explaining differing $\mathrm{Cl}^-$ transients in the brain



UNIVERSITY OF TWENTE.

Engels et al. J. Neurosci. (submitted)

# Calibration



## Model details: Soma



- Neuronal soma follows Dijkstra et al.
- Kir4.1 mediates nonlinear rates of K<sup>+</sup>uptake after a certain threshold.
- NKCC1 mediates primary influx of  $\rm Na^+,~K^+ and~Cl^-$
- Leaks maintain rest conditions

Currents/Fluxes should be consistent with Gibbs-Donnan equilibrium!

UNIVERSITY OF TWENTE.

## Model details: Soma



- Neuronal soma follows Dijkstra et al.
- Kir4.1 mediates nonlinear rates of K<sup>+</sup>uptake after a certain threshold.
- NKCC1 mediates primary influx of  $\rm Na^+,~K^+ and~Cl^-$
- Leaks maintain rest conditions

Currents/Fluxes should be consistent with Gibbs-Donnan equilibrium!

UNIVERSITY OF TWENTE.



UNIVERSITY OF TWENTE.



- Ca<sup>2+</sup>-dependent sequential vesicle pool model [1] + neurotransmitter recycling [2].
- Fractional availability of neurotransmitter  $\rightarrow$  Gluconcentrations.
- Cleft and synaptic volumes stay constant.

UNIVERSITY OF TWENTE.

<sup>&</sup>lt;sup>1</sup>Walter et al. PLOS Comp. Bio. (2013)

<sup>&</sup>lt;sup>2</sup>Tsodyks and Markram, PNAS 94(2) (1997)



- Ca<sup>2+</sup>-dependent sequential vesicle pool model [1] + neurotransmitter recycling [2].
- Fractional availability of neurotransmitter  $\rightarrow$  Gluconcentrations.
- Cleft and synaptic volumes stay constant.

<sup>1</sup>Walter et al. PLOS Comp. Bio. (2013)

<sup>2</sup>Tsodyks and Markram, PNAS 94(2) (1997)

UNIVERSITY OF TWENTE.



- Ca<sup>2+</sup>-dependent sequential vesicle pool model [1] + neurotransmitter recycling [2].
- Fractional availability of neurotransmitter  $\rightarrow$  Gluconcentrations.
- Cleft and synaptic volumes stay constant.

<sup>1</sup>Walter et al. PLOS Comp. Bio. (2013)

<sup>2</sup>Tsodyks and Markram, PNAS 94(2) (1997)

UNIVERSITY OF TWENTE.



- Ca<sup>2+</sup>-dependent sequential vesicle pool model [1] + neurotransmitter recycling [2].
- Fractional availability of neurotransmitter  $\rightarrow$  Gluconcentrations.
- Cleft and synaptic volumes stay constant.

<sup>1</sup>Walter et al. PLOS Comp. Bio. (2013)

<sup>2</sup>Tsodyks and Markram, PNAS 94(2) (1997)

UNIVERSITY OF TWENTE.



- Fused Gluin the cleft is taken up by neuronal and astrocyte EAATs.
- NCX and voltage gated-Ca<sup>2+</sup>channels affect Ca<sup>2+</sup>-dependent Glurecycling.
- NCX current follows [1].

<sup>&</sup>lt;sup>1</sup>Luo and Rudy, Circ Res. 74 (1994)