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Community detection in temporal networks

• Consider a temporal network
G = (V, E) with 20 nodes and edges
that evolve in time t = 1 . . . 21.

• Network shows transition from
11-regular with no clear
communities → two distinct
d-regular communities.

• Challenge: How can we detect the
single community computationally,
without a priori information?
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Community detection in temporal networks

Time

Slice-by-slice identification of
communities using Leiden [1]

State-of-the-art allocates
communities within regular graph!

1Traag, Waltman, & van Eck (2019). Scientific Reports 9-1.

M Kalia. The inflated dynamic Laplacian on networks



Community detection in temporal networks

Time

Community detection using the
inflated dynamic Laplacian reveals
better allocation!
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Key idea: Construct the inflated dynamic Laplacian

∆G0,a(F (t, x)) = a2∂ttF (t, x) + ∆gtF (t, x)

for temporal networks, and analyze the eigenproblem to detect
communities.
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The inflated dynamic Laplacian on space-time graphs

• Consider a space-time graph G = (V, E) where E is the edge set
connecting vertices V ⊂ N× N.

• Define an edge-weight function W : V × V 7→ R+
0 ,

W = ((x, t), (y, s)) 7→

{
W(x,t),(y,s), ((x, t), (y, s)) ∈ E
0, otherwise.

• Now define the supra Laplacian L : V × V 7→ R

L = ((x, t), (y, s)) 7→

L(x,t),(y,s) =
∑
y,s

W(x,t),(y,s), x = y and t = s

L(x,t),(y,s) = −W(x,t),(y,s) otherwise.
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The inflated dynamic Laplacian on space-time graphs

• Analogous to the continuous setting, the spatial and temporal
components of W and L can be split as follows,

W =Wspat + a2Wtemp

L = Lspat + a2Ltemp,

• The splitting is achieved by defining

Wspat
(x,t),(y,s) = 0, t 6= s,

Wtemp
(x,t),(y,s) = 0, t = s.
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Temporal network structure of W

• Spatial: Wspat =
⊕

tW(x,t),(y,t)

• Temporal: Given a T × T matrix
W temp,

Wtemp = W temp ⊗ I.

• Example: W temp has nonzero terms
on super- and subdiagonal only →
temporal network!

W =Wspat + a2Wtemp
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How does the inflated dynamic Laplacian L relate to graph partitioning?
Spectral partitioning and Cheeger constants.
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Balanced graph cuts and Cheeger constants

• Consider a pairwise disjoint space-time partition X1 . . .XK of V.
Cheeger constant hK determines quality of partition,

hK = min
X1...XK

max
k

cut(Xk,Xk)

min{|Xk|, |Xk|}
.

• cut(X,Y ) = sum of cut edge-weights betweenX and Y.

• Classical Cheeger inequality [1,2],

h2 ≤
√

2λ2

hK ≤ 23/2K2
√
λK

• λK is the K-th smallest eigenvalue of L.

1Chung (1996). Laplacians of graphs and cheeger’s inequalities. Combinatorics, Paul Erdos is Eighty.
2Lee, Gharan, Trevisan (2014). J. ACM.
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L versus slice-by-slice

• How well does L-based partitioning
perform against slice-by-slice?
Example → 3-partition in intro
graph.

• Consider slice-by-slice partitioning,
marked as X1 , X2 and X3 with

Cheeger constant hslice3 .

• Spectral partitioning with L gives a
3-partition. Let h3 be the
associated Cheeger constant

• In general we prove that

hK ≤ hsliceK

-based partition

Time
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Cheeger constants are bounded by k-smallest eigenvalues λk of L.
How do λk behave?
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Characterizing the spectrum of L

• Eigenvalues λk,a are either (spatial) λspatk,a or (temporal) λtemp
k,a .

• Recall: W temp is a T × T matrix with nonzero terms on supra/sub
diagonal only. Let Ltemp be its Laplacian.

• Temporal eigenvalues have the structure λtemp
k,a = a2νk where νk are

eigenvalues of Laplacian Ltemp .

• No simple structure for λspatk,a .

• lima→∞ λtemp
k,a =∞, what happens to λspatk,a ?
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Characterizing the spectrum of L

Theorem

Let N be the number of vertices per time fiber. Then for the first N
spatial eigenvalues λspatk,a we have,

lim
a→∞

λspatk,a = λDk , where LDfDk = λDk f
D
k .

LD is the dynamic Laplacian,

LD =
1

T

∑
t

Lspat
t .

Note: Lspat
t is the Laplacian corresponding to W spat

t for fixed t.

First N eigenvalues remain finite even in the a-limit!
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Algorithm for community detection in temporal networks

(1) For fixed a, compute L = Lspat + a2Ltemp. Find a = acrit →
transition from leading temporal to leading spatial eigenvalue.

(2) Estimate K (# partitions) → Ex. using spectral gap theorem from
[1].

(3) Perform SEBA (Sparse Eigenbasis Approximation) [2] on eigenvectors
f spatk,acrit

, which define clusters.

1Lee, Gharan & Trevisan (2014). J. ACM.
2Froyland, Rock & Sakellariou (2019). Commun Nonlinear Sci Numer Simulat.
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Example: d-regular → 2 clusters → 3 clusters

Graphs generated to show the following
edge dynamics

• Appearance

• Disappearance

• Merge

• Split

← Graph with 20 nodes, evolving over 40
time steps. Transition: regular graph
splits to 2 clusters which further splits
to 3 clusters.
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Example: d-regular → 2 clusters → 3 clusters

Time
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Example: d-regular → 2 clusters → 3 clusters

Note ‘bad’ SEBA vector 5.
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Example: d-regular → 2 clusters → 3 clusters

Time

Clustering done without SEBA vector 5.
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Example: d-regular → 2 clusters

← Graph with 20 nodes, evolving over 18
time steps. Transition: Emergence of 3
clusters from a regular graph.
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Example: d-regular → 2 clusters

Time
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Example: d-regular → 2 clusters

Note ‘bad’ SEBA vector 6.
Intermediate split visible (vecs 3,5).
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Example: d-regular → 2 clusters

Time

Clustering done without SEBA vector 6.
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Outlook

• Summary: Spectral clustering with the inflated dynamic Laplacian
reveals better balanced cuts in temporal networks comparted to
state-of-the-art.

• Challenge: Finding ‘optimal’ a by considering a ≡ a(x, t) and
formulating an appropriate minimisation problem.

• Future work: Continuum limit: Constructing edge-based dynamical
system to compare with continuous case.
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Questions?
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