Kindly view the PDF using Adobe Reader to view the animations properly!

Detecting communities in space-time graphs The inflated dynamic Laplacian for temporal networks

Manu Kalia (Freie Universität Berlin) Joint work with: Gary Froyland (UNSW Sydney) Péter Koltai (Universität Bayreuth)

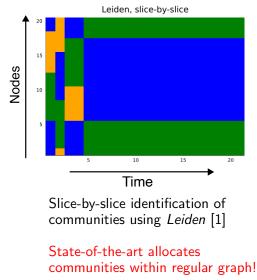
SIAM DS 23

May 14, 2023

Community detection in temporal networks

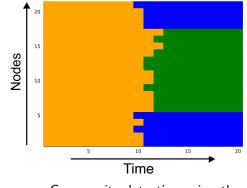
- Consider a temporal network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with 20 nodes and edges that evolve in time $t = 1 \dots 21$.
- Network shows transition from 11-regular with no clear communities → two distinct *d*-regular communities.
- **Challenge:** How can we detect the single community computationally, without *a priori* information?

Community detection in temporal networks



¹Traag, Waltman, & van Eck (2019). Scientific Reports 9-1.

Community detection in temporal networks



Community detection using the inflated dynamic Laplacian reveals better allocation!

Key idea: Construct the inflated dynamic Laplacian

$$\Delta_{G_0,a}(F(t,x)) = a^2 \partial_{tt} F(t,x) + \Delta_{g_t} F(t,x)$$

for temporal networks, and analyze the eigenproblem to detect communities.

The inflated dynamic Laplacian on space-time graphs

- Consider a space-time graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where \mathcal{E} is the edge set connecting vertices $\mathcal{V} \subset \mathbb{N} \times \mathbb{N}$.
- Define an edge-weight function $\mathcal{W}: \mathcal{V} \times \mathcal{V} \mapsto \mathbb{R}^+_0$,

$$\mathcal{W} = ((x,t),(y,s)) \mapsto \begin{cases} \mathcal{W}_{(x,t),(y,s)}, & ((x,t),(y,s)) \in \mathcal{E} \\ 0, & \text{otherwise.} \end{cases}$$

• Now define the supra Laplacian $\mathcal{L}:\mathcal{V}\times\mathcal{V}\mapsto\mathbb{R}$

$$\mathcal{L} = ((x,t), (y,s)) \mapsto \begin{cases} \mathcal{L}_{(x,t),(y,s)} = \sum_{y,s} \mathcal{W}_{(x,t),(y,s)}, & x = y \text{ and } t = s \\ \mathcal{L}_{(x,t),(y,s)} = -\mathcal{W}_{(x,t),(y,s)} & \text{otherwise.} \end{cases}$$

The inflated dynamic Laplacian on space-time graphs

• Analogous to the continuous setting, the spatial and temporal components of $\mathcal W$ and $\mathcal L$ can be split as follows,

$$\mathcal{W} = \mathcal{W}^{\text{spat}} + a^2 \mathcal{W}^{\text{temp}}$$
$$\mathcal{L} = \mathcal{L}^{\text{spat}} + a^2 \mathcal{L}^{\text{temp}},$$

• The splitting is achieved by defining

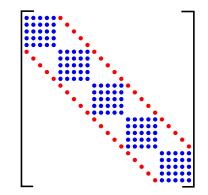
$$\begin{aligned} &\mathcal{W}^{\text{spat}}_{(x,t),(y,s)}=0, \ t\neq s, \\ &\mathcal{W}^{\text{temp}}_{(x,t),(y,s)}=0, \ t=s. \end{aligned}$$

Temporal network structure of $\ensuremath{\mathcal{W}}$

- Spatial: $W^{\text{spat}} = \bigoplus_t W_{(x,t),(y,t)}$
- **Temporal**: Given a $T \times T$ matrix W^{temp} ,

 $\mathcal{W}^{\text{temp}} = W^{\text{temp}} \otimes I.$

 Example: W^{temp} has nonzero terms on super- and subdiagonal only → temporal network!



$$\mathcal{W} = \mathcal{W}^{\text{spat}} + a^2 \mathcal{W}^{\text{temp}}$$

How does the inflated dynamic Laplacian \mathcal{L} relate to graph partitioning? Spectral partitioning and Cheeger constants.

Balanced graph cuts and Cheeger constants

• Consider a pairwise disjoint space-time partition $\mathcal{X}_1 \dots \mathcal{X}_K$ of \mathcal{V} . Cheeger constant h_K determines quality of partition,

$$h_K = \min_{\mathcal{X}_1...\mathcal{X}_K} \max_k \frac{\operatorname{cut}(\mathcal{X}_k, \overline{\mathcal{X}_k})}{\min\{|\mathcal{X}_k|, |\overline{\mathcal{X}_k}|\}}.$$

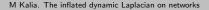
- $\operatorname{cut}(X, Y) = \operatorname{sum} \operatorname{of} \operatorname{cut} \operatorname{edge-weights} \operatorname{between} X$ and Y.
- Classical Cheeger inequality [1,2],

Freie Universität

$$h_2 \le \sqrt{2\lambda_2}$$
$$h_K \le 2^{3/2} K^2 \sqrt{\lambda_K}$$

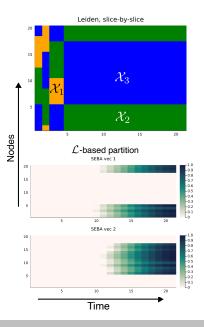
• λ_K is the K-th smallest eigenvalue of \mathcal{L} .

¹Chung (1996). Laplacians of graphs and cheeger's inequalities. *Combinatorics, Paul Erdos is Eighty.*²Lee, Gharan, Trevisan (2014). J. ACM.



$\mathcal L$ versus slice-by-slice

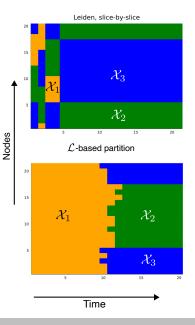
- How well does *L*-based partitioning perform against slice-by-slice?
 Example → 3-partition in intro graph.
- Consider slice-by-slice partitioning, marked as X₁, X₂ and X₃ with Cheeger constant h₃^{slice}.
- Spectral partitioning with L gives a 3-partition. Let h₃ be the associated Cheeger constant
- In general we prove that



$\mathcal L$ versus slice-by-slice

- How well does *L*-based partitioning perform against slice-by-slice?
 Example → 3-partition in intro graph.
- Consider slice-by-slice partitioning, marked as X₁, X₂ and X₃ with Cheeger constant h₃^{slice}.
- Spectral partitioning with *L* gives a 3-partition. Let h₃ be the associated Cheeger constant
- In general we prove that

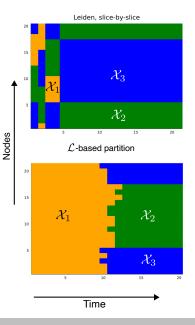
$$h_K \leq h_K^{\text{slice}}$$



$\mathcal L$ versus slice-by-slice

- How well does *L*-based partitioning perform against slice-by-slice?
 Example → 3-partition in intro graph.
- Consider slice-by-slice partitioning, marked as X₁, X₂ and X₃ with Cheeger constant h₃^{slice}.
- Spectral partitioning with *L* gives a 3-partition. Let h₃ be the associated Cheeger constant
- In general we prove that

$$h_K \leq h_K^{\text{slice}}$$



Cheeger constants are bounded by k-smallest eigenvalues λ_k of \mathcal{L} . How do λ_k behave?

Characterizing the spectrum of $\boldsymbol{\mathcal{L}}$

- Eigenvalues $\lambda_{k,a}$ are either (spatial) $\lambda_{k,a}^{\text{spat}}$ or (temporal) $\lambda_{k,a}^{\text{temp}}$.
- Recall: W^{temp} is a $T \times T$ matrix with nonzero terms on supra/sub diagonal only. Let L^{temp} be its Laplacian.
- Temporal eigenvalues have the structure $\lambda_{k,a}^{temp} = a^2 \nu_k$ where ν_k are eigenvalues of Laplacian L^{temp} .
- No simple structure for $\lambda_{k,a}^{\text{spat}}$.
- $\lim_{a\to\infty} \lambda_{k,a}^{\text{temp}} = \infty$, what happens to $\lambda_{k,a}^{\text{spat}}$?

Characterizing the spectrum of $\boldsymbol{\mathcal{L}}$

- Eigenvalues $\lambda_{k,a}$ are either (spatial) $\lambda_{k,a}^{\text{spat}}$ or (temporal) $\lambda_{k,a}^{\text{temp}}$.
- Recall: W^{temp} is a $T \times T$ matrix with nonzero terms on supra/sub diagonal only. Let L^{temp} be its Laplacian.
- Temporal eigenvalues have the structure $\lambda_{k,a}^{temp} = a^2 \nu_k$ where ν_k are eigenvalues of Laplacian L^{temp} .
- No simple structure for $\lambda_{k,a}^{\text{spat}}$.
- $\lim_{a \to \infty} \lambda_{k,a}^{\text{temp}} = \infty$, what happens to $\lambda_{k,a}^{\text{spat}}$?

Characterizing the spectrum of $\ensuremath{\mathcal{L}}$

Theorem

Let N be the number of vertices per time fiber. Then for the first N spatial eigenvalues $\lambda_{k,a}^{\rm spat}$ we have,

$$\lim_{a\to\infty}\lambda_{k,a}^{\rm spat}=\lambda_k^D, \text{ where } \mathcal{L}^D f_k^D=\lambda_k^D f_k^D.$$

 \mathcal{L}^{D} is the dynamic Laplacian,

$$\mathcal{L}^D = \frac{1}{T} \sum_t L_t^{\text{spat}}.$$

Note: L_t^{spat} is the Laplacian corresponding to W_t^{spat} for fixed t.

First N eigenvalues remain finite even in the a-limit!

Algorithm for community detection in temporal networks

- (1) For fixed a, compute $\mathcal{L} = \mathcal{L}^{\text{spat}} + a^2 \mathcal{L}^{\text{temp}}$. Find $a = a_{\text{crit}} \rightarrow$ transition from leading temporal to leading spatial eigenvalue.
- (2) Estimate K (# partitions) \rightarrow Ex. using spectral gap theorem from [1].
- (3) Perform SEBA (Sparse Eigenbasis Approximation) [2] on eigenvectors $f_{k,a_{\rm crit}}^{\rm spat}$, which define clusters.

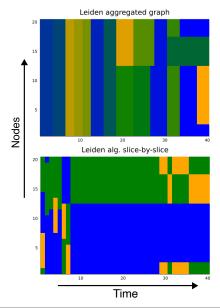
²Froyland, Rock & Sakellariou (2019). Commun Nonlinear Sci Numer Simulat.

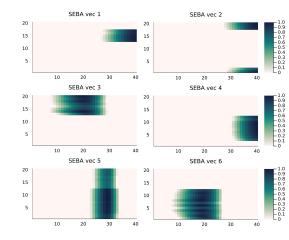
¹Lee, Gharan & Trevisan (2014). J. ACM.

Graphs generated to show the following edge dynamics $% \left(f_{1}, f_{2}, f_{3}, f_{3}$

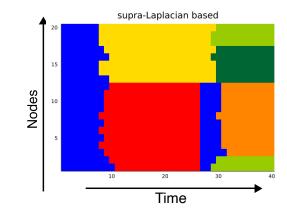
- Appearance
- Disappearance
- Merge
- Split

 \leftarrow Graph with 20 nodes, evolving over 40 time steps. Transition: regular graph splits to 2 clusters which further splits to 3 clusters.



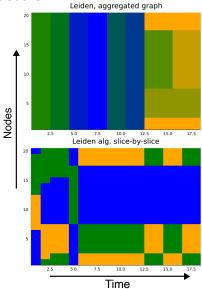


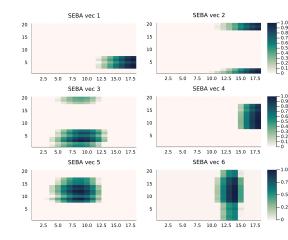
Note 'bad' SEBA vector 5.



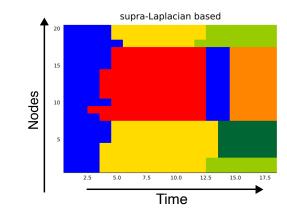
Clustering done without SEBA vector 5.

 $\leftarrow \text{ Graph with 20 nodes, evolving over 18} \\ \text{time steps. Transition: Emergence of } \mathbf{3} \\ \textbf{clusters from a regular graph.} \\ \end{cases}$





Note 'bad' SEBA vector 6. Intermediate split visible (vecs 3,5).



Clustering done without SEBA vector 6.

Outlook

- **Summary:** Spectral clustering with the inflated dynamic Laplacian reveals better balanced cuts in temporal networks comparted to state-of-the-art.
- **Challenge:** Finding 'optimal' a by considering $a \equiv a(x,t)$ and formulating an appropriate minimisation problem.
- **Future work:** Continuum limit: Constructing edge-based dynamical system to compare with continuous case.

Questions?

